Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(24): e2221826120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276425

RESUMO

Thousands of insect species have been introduced outside of their native ranges, and some of them strongly impact ecosystems and human societies. Because a large fraction of insects feed on or are associated with plants, nonnative plants provide habitat and resources for invading insects, thereby facilitating their establishment. Furthermore, plant imports represent one of the main pathways for accidental nonnative insect introductions. Here, we tested the hypothesis that plant invasions precede and promote insect invasions. We found that geographical variation in current nonnative insect flows was best explained by nonnative plant flows dating back to 1900 rather than by more recent plant flows. Interestingly, nonnative plant flows were a better predictor of insect invasions than potentially confounding socioeconomic variables. Based on the observed time lag between plant and insect invasions, we estimated that the global insect invasion debt consists of 3,442 region-level introductions, representing a potential increase of 35% of insect invasions. This debt was most important in the Afrotropics, the Neotropics, and Indomalaya, where we expect a 10 to 20-fold increase in discoveries of new nonnative insect species. Overall, our results highlight the strong link between plant and insect invasions and show that limiting the spread of nonnative plants might be key to preventing future invasions of both plants and insects.


Assuntos
Insetos , Espécies Introduzidas , Animais , Plantas
2.
Annu Rev Entomol ; 68: 211-229, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36198403

RESUMO

The economic and environmental threats posed by non-native forest insects are ever increasing with the continuing globalization of trade and travel; thus, the need for mitigation through effective biosecurity is greater than ever. However, despite decades of research and implementation of preborder, border, and postborder preventative measures, insect invasions continue to occur, with no evidence of saturation, and are even predicted to accelerate. In this article, we review biosecurity measures used to mitigate the arrival, establishment, spread, and impacts of non-native forest insects and possible impediments to the successful implementation of these measures. Biosecurity successes are likely under-recognized because they are difficult to detect and quantify, whereas failures are more evident in the continued establishment of additional non-native species. There are limitations in existing biosecurity systems at global and country scales (for example, inspecting all imports is impossible, no phytosanitary measures are perfect, knownunknowns cannot be regulated against, and noncompliance is an ongoing problem). Biosecurity should be a shared responsibility across countries, governments, stakeholders, and individuals.


Assuntos
Biosseguridade , Espécies Introduzidas , Animais , Florestas , Internacionalidade , Insetos
3.
Ecol Appl ; 31(7): e02412, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255404

RESUMO

As part of national biosecurity programs, cargo imports, passenger baggage, and international mail are inspected at ports of entry to verify compliance with phytosanitary regulations and to intercept potentially damaging nonnative species to prevent their introduction. Detection of organisms during inspections may also provide crucial information about the species composition and relative arrival rates in invasion pathways that can inform the implementation of other biosecurity practices such as quarantines and surveillance. In most regions, insects are the main taxonomic group encountered during inspections. We gathered insect interception data from nine world regions collected from 1995 to 2019 to compare the composition of species arriving at ports in these regions. Collectively, 8,716 insect species were intercepted in these regions over the last 25 yr, with the combined international data set comprising 1,899,573 interception events, of which 863,972 were identified to species level. Rarefaction analysis indicated that interceptions comprise only a small fraction of species present in invasion pathways. Despite differences in inspection methodologies, as well as differences in the composition of import source regions and imported commodities, we found strong positive correlations in species interception frequencies between regions, particularly within the Hemiptera and Thysanoptera. There were also significant differences in species frequencies among insects intercepted in different regions. Nevertheless, integrating interception data among multiple regions would be valuable for estimating invasion risks for insect species with high likelihoods of introduction as well as for identifying rare but potentially damaging species.


Assuntos
Insetos , Espécies Introduzidas , Animais , Humanos
4.
Bull Entomol Res ; 110(6): 709-724, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32456717

RESUMO

The genus Megastigmus Dalman, 1820 (Hymenoptera: Megastigmidae) contains potential biocontrol agents of the invasive eucalypt galling chalcid Leptocybe spp. (Hymenoptera: Eulophidae), with several species reported in various parts of the world. Species discrimination is challenging due to intraspecific morphological variation, difficulty in measuring sizes of body parts, and the lack of information regarding the global distribution of parasitic Megastigmus. We used two species commonly associated with Leptocybe in its native range to review taxonomic methods and determine the most reliable morphological characters in species delimitation. We examined size variation of body characters, and conducted species discrimination using multivariate ratio analysis, mitochondrial Cytochrome c oxidase subunit 1 (COI) and nuclear 28S rDNA (28S) sequences. Morphological traits were effective in species delimitation yet revealed high variation in several characters employed in current keys. Knowledge generated on morphology and DNA justified the description of a new species, M. manonae, sp. n., the first record of M. pretorianensis in Australia, and revised diagnostic characters for M. zvimendeli. Based on these diagnostic characters and molecular data, we synonymize three species (M. judikingae, syn. n., from Australia, M. sichuanensis, syn. n., from China and M. icipeensis, syn. n., from Kenya) with M. zvimendeli. Our findings highlight the importance of molecular markers in assisting taxonomic decision-making and the need for coordinated work in identifying Megastigmus associated with Leptocybe spp.


Assuntos
Himenópteros/classificação , Himenópteros/genética , Animais , Austrália , Código de Barras de DNA Taxonômico , DNA Ribossômico/genética , Eucalyptus/parasitologia , Himenópteros/anatomia & histologia , Himenópteros/parasitologia , Especificidade da Espécie
5.
Naturwissenschaften ; 100(8): 769-77, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23817946

RESUMO

Lemurs are the most olfactory-oriented of primates, yet there is still only a basic level of understanding of what their scent marks communicate. We analyzed scent secretions from Milne-Edwards' sifakas (Propithecus edwardsi) collected in their natural habitat of Ranomafana National Park, Madagascar. We sought to test whether the scent mark could signal genetic relatedness in addition to species, sex, season, and individuality. We not only found correlations (r (2) = 0.38, P = 0.017) between the total olfactory fingerprint and genetic relatedness but also between relatedness and specific components of the odor, despite the complex environmental signals from differences in diet and behavior in a natural setting. To the best of our knowledge, this is the first demonstration of an association between genetic relatedness and chemical communication in a wild primate population. Furthermore, we found a variety of compounds that were specific to each sex and each sampling period. This research shows that scent marks could act as a remote signal to avoid inbreeding, optimize mating opportunities, and potentially aid kin selection.


Assuntos
Comunicação Animal , Lemur/fisiologia , Feromônios/química , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Lemur/genética , Madagáscar , Masculino , Análise Multivariada , Feromônios/genética , Glândulas Odoríferas/química
6.
Syst Parasitol ; 86(3): 257-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24163026

RESUMO

Two new species of Chrysomelobia Regenfuss, 1968, C. alleni n. sp. and C. intrusus n. sp., are described from Tasmanian specimens of the eucalyptus leaf beetle Paropsis charybdis Stål. This beetle is now known to host three species of Chrysomelobia, the other being Chrysomelobia pagurus Seeman, 2008, which is recorded from Tasmania for the first time. Thus, the three species of Paropsis Olivier known to have podapolipid mites each have three mite species from three separate lineages of Chrysomelobia. Collections of P. charybdis in New Zealand (n = 150), where it is an invasive pest species, failed to locate any infested beetles, suggesting that these populations were established by uninfested beetles. The prospect of using these mites as biocontrol agents is discussed.


Assuntos
Besouros/parasitologia , Ácaros/anatomia & histologia , Ácaros/classificação , Animais , Feminino , Masculino , Nova Zelândia , Especificidade da Espécie
7.
Insects ; 14(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37887824

RESUMO

Bark beetles (Coleoptera: Curculionidae: Scolytinae) are among the most damaging tree pests globally. Rising temperatures, drought, fire, storms, cyclones, and poor forest management cause stress and loss of vigour in trees, and these conditions favour bark beetle outbreaks. While research has been conducted on push-pull strategies to deter bark beetles, using attractive and deterrent semiochemicals, the potential of this strategy to reduce bark beetle populations, particularly in the genera Dendroctonus and Ips, remains uncertain. Here, we conducted a global meta-analysis of 52 research articles to quantify the effects of semiochemical treatments on managing different species of Dendroctonus and Ips for forest protection. Based on this analysis, we found that push-pull semiochemicals can significantly reduce Dendroctonus and Ips populations measured by a reduction in the attraction to lure/trap catches, tree mortality, and attacks on trees. The overall efficacy of the push-pull semiochemical treatment shows a 66% reduction for Ips compared to control and a 54% reduction compared to control for Dendroctonus, while, at the species level, there was a 69% reduction for Dendroctonus ponderosae (Hopkins) and a 94% reduction in Ips perturbatus (Eichhoff), and a 93% reduction in Ips latidens (LeConte). Interestingly, among different treatment sources, the efficacy of conspecific semiochemicals in combination with heterospecific semiochemicals and non-host volatiles showed a 92% reduction in Dendroctonus spp., and conspecific semiochemicals in combination with non-host volatiles showed a 77% significant reduction in Ips spp., while the efficacy of heterospecific semiochemicals in reducing Ips population was about 69%, and 20% in Dendroctonus. Among different ecological regions, the use of a push-pull strategy showed a 70% reduction in Dendroctonus in central-west North America, and Ips showed a 75% reduction in southwest North America. Our results demonstrate that semiochemical-based push-pull techniques have the potential to reduce Dendroctonus and Ips bark beetle populations. Furthermore, based on our analysis, the efficacy of such eco-friendly interventions could be further improved and provide a good tool for forest managers to control these pests, at least under some circumstances.

8.
Heliyon ; 8(9): e10516, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36119877

RESUMO

Insects of different orders produce elaborate structures to protect their eggs from the many threats they may face from the environment and natural enemies. In the weevil genus Gonipterus, their dark, hardened egg capsule is possibly generated by a mixture of the insects' excrement and glandular substances. To test this hypothesis, this study focused on the elucidation of protein components present in the egg capsule cover and interrogated them through comparative analysis and gene expression to help infer potential functions. First, female Gonipterus sp. n. 2 reproductive and alimentary tissues were isolated to establish a reference transcriptome-derived protein database. Then, proteins from weevil frass (excrement) and egg capsule cover were identified through mass spectrometry proteomics. We found that certain egg capsule cover proteins were both exclusive and shared between frass and egg capsule cover, including those of plant origin (e.g. photosystem II protein) and others secreted by the weevil, primarily from reproductive tissue. Among them, a mucin/spidroin-like protein and novel proteins with repetitive units that likely play a structural role were identified. We have confirmed the dual origin of the egg capsule cover substance as a blend of the insects' frass and secretions. Novel proteins secreted by the weevils are key candidates for holding the egg case cover together.

9.
Ecol Evol ; 10(20): 11565-11578, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144984

RESUMO

Since outbreaks of the invasive blue gum chalcids Leptocybe spp. began, the genus Megastigmus (Hymenoptera: Megastigmidae) has been increasingly studied as containing potential biocontrol agents against these pests. Megastigmus species have been collected and described from Australia, the presumed origin of Leptocybe spp., with M. zvimendeli and M. lawsoni reported as Leptocybe spp. parasitoids established outside of Australia. Parasitic Megastigmus have been reported to occur locally in the Neotropics, Afrotropic, Palearctic, and Indomalaya biogeographic realms, and in many cases described as new to science. However, molecular tools have not been used in studying parasitic Megastigmus, and difficulties in morphological taxonomy have compromised further understanding of eucalypt-associated Megastigmus as well as the Megastigmus-Leptocybe association. In this study, we used molecular markers to study the species composition and phylogeny of Megastigmus collected from eucalypt galls in Australia and from Leptocybe spp. galls from South Africa, Kenya, Israel, China, and Vietnam. We record thirteen discrete species and a species complex associated with eucalypt galls. A summary of morphological characters is provided to assist morphological delimitation of the studied group. A phylogeny based on 28S rDNA identified species groups of importance to Leptocybe spp. biocontrol agents from four clades with nine species. Relationships between Megastigmus from eucalypt galls and their phytophagous congeners were unresolved. Further molecular work is needed to clarify the identity of many species.

10.
J Chem Ecol ; 35(9): 1043-53, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19777311

RESUMO

Hybridization is an important biological phenomenon that can be used to understand the evolutionary process of speciation of plants and their associated pests and diseases. Interactions between hybrid plants and the herbivores of the parental taxa may be used to elucidate the various cues being used by the pests for host location or other processes. The chemical composition of plants, and their physical foliar attributes, including leaf thickness, trichome density, moisture content and specific leaf weight were compared between allopatric pure and commercial hybrid species of Corymbia, an important subtropical hardwood taxon. The leaf-eating beetle Paropsis atomaria, to which the pure taxa represented host (C. citriodora subsp. variegata) and non-host (C. torelliana) plants, was used to examine patterns of herbivory in relation to these traits. Hybrid physical foliar traits, chemical profiles, and field and laboratory beetle feeding preference, while showing some variability, were generally intermediate to those exhibited by parent taxa, thus suggesting an additive inheritance pattern. The hybrid susceptibility hypothesis was not supported by our field or laboratory studies, and there was no strong relationship between adult preference and larval performance. The most-preferred adult host was the sympatric taxon, although this species supported the lowest larval survival, while the hybrid produced significantly smaller pupae than the pure species. The results are discussed in relation to plant chemistry and physical characteristics. The findings suggest a chemical basis for host selection behavior and indicate that it may be possible to select for resistance to this insect pest in these commercially important hardwood trees.


Assuntos
Besouros/fisiologia , Myrtaceae/química , Animais , Evolução Molecular , Comportamento Alimentar , Hibridização Genética , Larva/fisiologia , Myrtaceae/genética , Folhas de Planta/química
11.
Biol Open ; 7(2)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29437044

RESUMO

Silks from orb-weaving spiders are exceptionally tough, producing a model polymer for biomimetic fibre development. The mechanical properties of naturally spun silk threads from two species of Australian orb-weavers, Nephila pilipes and Nephilaplumipes, were examined here in relation to overall thread diameter, the size and number of fibres within threads, and spider size. N. pilipes, the larger of the two species, had significantly tougher silk with higher strain capacity than its smaller congener, producing threads with average toughness of 150 MJ m-3, despite thread diameter, mean fibre diameter and number of fibres per thread not differing significantly between the two species. Within N. pilipes, smaller silk fibres were produced by larger spiders, yielding tougher threads. In contrast, while spider size was correlated with thread diameter in N. plumipes, there were no clear patterns relating to silk toughness, which suggests that the differences in properties between the silk of the two species arise through differing molecular structure. Our results support previous studies that found that the mechanical properties of silk differ between distantly related spider species, and extends on that work to show that the mechanical and physical properties of silk from more closely related species can also differ remarkably.

12.
J Proteomics ; 146: 195-206, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27389852

RESUMO

UNLABELLED: The European horntail woodwasp, Sirex noctilio, is an invasive insect that attacks conifer hosts, particularly Pinus species. Venom injected by female S. noctilio, together with its symbiotic fungus, damages the normal physiology of Pinus, leading to death of the tree. To identify the proteinaceous components in the venom and uncover the interplay between venom proteins and tree proteins, clarification of the overall profile of proteins produced in the venom gland apparatus was carried out in this work. The venom sac proteome utilised in-solution digested in either a natural or deglycosylated state, prior to nanoHPLC LTQ-Orbitrap under CID/ETD mode. Here, we report the identification of 1454 and 1225 proteins in venom and sac, respectively, with 410 mutual proteins. Approximately 90 proteins were predicted to be secretory, of which 8 have features characteristic of toxins. Chemosensory binding proteins were also identified. Gene ontology and KEGG pathway analysis were employed to predict the protein functions and biological pathways in venom and sac. Protein-protein interaction (PPI) analysis suggested that one-step responses represent the majority of the Sirex-Pinus PPIs, and the proteins representing network hub nodes could be of importance for the development of pest management strategies. SIGNIFICANCE: The woodwasp Sirex noctilio is an invasive species in many parts of the world, including Australia and North America, where it is considered within the top 10 most serious forest insects. Where they have been introduced, the female woodwasps attack living pine trees, causing significant economic losses. Central to this destruction is the woodwasp's life cycle requirement to bore a hole to deposit eggs and a toxic mucus that disables the tree's network for transporting water and nutrients, yet aids in larval survival. Here we specifically examine the mucus gland apparatus and its contents, revealing the protein components that together with 'noctilisin' facilitate this complex association. The identification of chemosensory binding proteins further supports a role for the woodwasp ovipositor as an instrument for early stages of host tree selection. These findings could provide important clues towards the development of novel control tools against this pest.


Assuntos
Pinus/parasitologia , Proteômica/métodos , Venenos de Vespas/análise , Vespas/fisiologia , Animais , Interações Hospedeiro-Parasita , Proteínas de Insetos , Pinus/efeitos dos fármacos , Proteínas de Plantas , Mapeamento de Interação de Proteínas , Venenos de Vespas/toxicidade , Vespas/patogenicidade
13.
J Parasitol ; 90(1): 114-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15040676

RESUMO

Sexual transmission is a widespread means of infection, but apart from those in humans, the ecology of sexually transmitted organisms is not well known. In this study, we present an ecological study of a sexually transmitted mite, Parobia husbandi Seeman and Nahrung (Acari: Podapolipidae), that lives beneath the elytra of Chrysophtharta agricola (Chapuis) (Coleoptera: Chrysomelidae). In each of 2 yr, prevalence of mites on beetles began each spring at about 10-20% but gradually increased to 80-100% by late summer. Overlap of adult beetle generations at this time (i.e., the parental generation mating with the F1 generation) is essential for the persistence of these mites. Mites exhibited temporal change in their spatial distribution on beetles; these changes were probably a response to beetle activity (e.g., emergence from diapause) and the need for dispersal from parental to F1 generation beetles. Prevalence and mean intensity of mites was higher on female beetles compared with male beetles. Female bias of sexually transmitted infection has been predicted in animals but hitherto observed only in primates. We speculate that variable male mate-finding success is the cause of these sex-based differences of mite infections, and that female bias in sexually transmitted disease (STD) infection will be widespread in the animal kingdom.


Assuntos
Besouros/parasitologia , Ácaros/fisiologia , Animais , Feminino , Interações Hospedeiro-Parasita , Masculino , Ácaros/crescimento & desenvolvimento , Fatores Sexuais , Tasmânia
14.
Environ Entomol ; 43(1): 37-46, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24367905

RESUMO

Phoracantha longicorn beetles are endemic to Australia, and some species have become significant pests of eucalypts worldwide, yet little is known about their host plant interactions and factors influencing tree susceptibility in Australia. Here, we investigate the host relationships of Phoracantha solida (Blackburn, 1894) on four eucalypt taxa (one pure species and three hybrid families), examining feeding site physical characteristics including phloem thickness, density, and moisture content, and host tree factors such as diameter, height, growth, taper, and survival. We also determine the cardinal and vertical (within-tree) and horizontal (between-tree) spatial distribution of borers. Fewer than 10% of P. solida attacks were recorded from the pure species (Corymbia citriodora subsp. variegate (Hook)), and this taxon also showed the highest survival, phloem thickness, relative growth rate, and bark:wood area. For the two most susceptible taxa, borer severity was negatively correlated with moisture content, and positively related to phloem density. Borers were nonrandomly and nonuniformly distributed within trees, and were statistically aggregated in 32% of plots. More attacks were situated on the northern side of the tree than the other aspects, and most larvae fed within the lower 50 cm of the bole, with attack height positively correlated with severity. Trees with borers had more dead neighbors, and more bored neighbors, than trees without borers, while within plots, borer incidence and severity were positively correlated. Because the more susceptible taxa overlapped with less susceptible taxa for several physical tree factors, the role of primary and secondary chemistries in determining host suitability needs to be investigated. Nevertheless, taxon, moisture content, phloem density, tree size, and mortality of neighboring trees appeared the most important physical characteristics influencing host suitability for P. solida at this site.


Assuntos
Besouros , Herbivoria , Myrtaceae/anatomia & histologia , Animais , Myrtaceae/fisiologia , Árvores/anatomia & histologia , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa