RESUMO
The wavelength of a single frequency quantum dot distributed feedback (DFB) laser operating in the O-band is athermalised over a 74 °C ambient temperature range. Two techniques are presented, one utilising the laser self-heating for tuning control, the other using a resistive heater. Both techniques show greatly improved power efficiency over conventional wavelength control schemes, and both demonstrate wavelength stability of better than 0.1 nm (17.5 GHz) without mode hops over the entire temperature range. The use of a high operating temperature quantum dot laser together with an innovative submount design to increase the thermal impedance of the device enables the improved use of the laser self-heating for wavelength tuning. The submount design entails the laser being suspended over an air gap with the use of glass supports, preventing heat from escaping from the diode.
RESUMO
A genetic algorithm is developed with a view to optimizing surface-etched grating tunable lasers over a large optimization space comprised of several variables. Using this approach, a new iteration of slotted lasers arrays are optimized showing significant improvements over previous designs. Output power, lower grating order, fabrication tolerance and performance at high temperatures are among key parameters improved. The new designs feature a much lower grating order (24-29) than used previously (37). The biggest improvement is a near doubling to slope efficiency to 0.1-0.13 mW/mA, with wavelengths from the array covering the C-band . The designs show a reduced sensitivity to etch depth variations. Designs with linewidths down to 100 kHz are also simulated. This algorithm can be readily applied to different wafer materials to efficiently generate slotted lasers designs at new wavelengths.
RESUMO
We generate random numerical waveforms that mimic laser phase noise incorporating laser-resonance enhanced phase noise. The phase noise waveforms are employed in system simulators to estimate the resulting bit error rate penalties for differential quadrature phase shift keying signals. The results show that baudrate dependence of the bit error rate performance arises from laser-resonance phase noise. In addition, we show with supporting experimental results that the laser-resonance phase noise on the pumps in four-wave-mixing-based wavelength converters is responsible for large bit error rate floors.