Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Plant Cell Physiol ; 64(11): 1397-1406, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37705303

RESUMO

Circadian clocks are biological timekeeping systems that coordinate genetic, metabolic and physiological behaviors with the external day-night cycle. The clock in plants relies on the transcriptional-translational feedback loops transcription-translation feedback loop (TTFL), consisting of transcription factors including PSUEDO-RESPONSE REGULATOR (PRR) proteins, plant lineage-specific transcriptional repressors. Here, we report that a novel synthetic small-molecule modulator, 5-(3,4-dichlorophenyl)-1-phenyl-1,7-dihydro-4H-pyrazolo[3,4-d] pyrimidine-4,6(5H)-dione (TU-892), affects the PRR7 protein amount. A clock reporter line of Arabidopsis was screened against the 10,000 small molecules in the Maybridge Hitfinder 10K chemical library. This screening identified TU-892 as a period-lengthening molecule. Gene expression analyses showed that TU-892 treatment upregulates CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) mRNA expression. TU-892 treatment reduced the amount of PRR7 protein, a transcriptional repressor of CCA1. Other PRR proteins including TIMING OF CAB EXPRESSION 1 were altered less by TU-892 treatment. TU-892-dependent CCA1 upregulation was attenuated in mutants impaired in PRR7. Collectively, TU-892 is a novel type of clock modulator that reduces the levels of PRR7 protein.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 190(2): 952-967, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35266545

RESUMO

During and after the domestication of crops from ancestral wild plants, humans selected cultivars that could change their flowering time in response to seasonal daylength. Continuous selection of this trait eventually allowed the introduction of crops into higher or lower latitudes and different climates from the original regions where domestication initiated. In the past two decades, numerous studies have found the causal genes or alleles that change flowering time and have assisted in adapting crop species such as barley (Hordeum vulgare), wheat (Triticum aestivum L.), rice (Oryza sativa L.), pea (Pisum sativum L.), maize (Zea mays spp. mays), and soybean (Glycine max (L.) Merr.) to new environments. This updated review summarizes the genes or alleles that contributed to crop adaptation in different climatic areas. Many of these genes are putative orthologs of Arabidopsis (Arabidopsis thaliana) core clock genes. We also discuss how knowledge of the clock's molecular functioning can facilitate molecular breeding in the future.


Assuntos
Arabidopsis , Hordeum , Oryza , Arabidopsis/genética , Produtos Agrícolas/genética , Flores/genética , Hordeum/genética , Humanos , Oryza/genética , Pisum sativum/genética , Reguladores de Crescimento de Plantas , Triticum/genética
3.
Plant Cell Physiol ; 63(11): 1720-1728, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36043692

RESUMO

The circadian clock, an internal time-keeping system with a period of about 24 h, coordinates many physiological processes with the day-night cycle. We previously demonstrated that BML-259 [N-(5-isopropyl-2-thiazolyl) phenylacetamide], a small molecule with mammal CYCLIN DEPENDENT KINASE 5 (CDK5)/CDK2 inhibition activity, lengthens Arabidopsis thaliana (Arabidopsis) circadian clock periods. BML-259 inhibits Arabidopsis CDKC kinase, which phosphorylates RNA polymerase II in the general transcriptional machinery. To accelerate our understanding of the inhibitory mechanism of BML-259 on CDKC, we performed structure-function studies of BML-259 using circadian period-lengthening activity as an estimation of CDKC inhibitor activity in vivo. The presence of a thiazole ring is essential for period-lengthening activity, whereas acetamide, isopropyl and phenyl groups can be modified without effect. BML-259 analog TT-539, a known mammal CDK5 inhibitor, did not lengthen the period nor did it inhibit Pol II phosphorylation. TT-361, an analog having a thiophenyl ring instead of a phenyl ring, possesses stronger period-lengthening activity and CDKC;2 inhibitory activity than BML-259. In silico ensemble docking calculations using Arabidopsis CDKC;2 obtained by a homology modeling indicated that the different binding conformations between these molecules and CDKC;2 explain the divergent activities of TT539 and TT361.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Regulação da Expressão Gênica de Plantas , Relógios Circadianos/genética , Ritmo Circadiano/genética , Mamíferos/metabolismo
4.
Plant Cell Physiol ; 63(4): 450-462, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35086143

RESUMO

The circadian clock is an internal timekeeping system that governs about 24 h biological rhythms of a broad range of developmental and metabolic activities. The clocks in eukaryotes are thought to rely on lineage-specific transcriptional-translational feedback loops. However, the mechanisms underlying the basic transcriptional regulation events for clock function have not yet been fully explored. Here, through a combination of chemical biology and genetic approaches, we demonstrate that phosphorylation of RNA polymerase II by CYCLIN DEPENDENT KINASE C; 2 (CDKC;2) is required for maintaining the circadian period in Arabidopsis. Chemical screening identified BML-259, the inhibitor of mammalian CDK2/CDK5, as a compound lengthening the circadian period of Arabidopsis. Short-term BML-259 treatment resulted in decreased expression of most clock-associated genes. Development of a chemical probe followed by affinity proteomics revealed that BML-259 binds to CDKC;2. Loss-of-function mutations of cdkc;2 caused a long period phenotype. In vitro experiments demonstrated that the CDKC;2 immunocomplex phosphorylates the C-terminal domain of RNA polymerase II, and BML-259 inhibits this phosphorylation. Collectively, this study suggests that transcriptional activity maintained by CDKC;2 is required for proper period length, which is an essential feature of the circadian clock in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Animais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Mamíferos/metabolismo , Fosforilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
5.
New Phytol ; 235(4): 1336-1343, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35661165

RESUMO

Circadian clocks regulate the diel rhythmic physiological activities of plants, enabling them to anticipate and adapt to day-night and seasonal changes. Genetic and biochemical approaches have suggested that transcription-translation feedback loops (TTFL) are crucial for Arabidopsis clock function. Recently, the study of chemical chronobiology has emerged as a discipline within the circadian clock field, with important and complementary discoveries from both plant and animal research. In this review, we introduce recent advances in chemical biology using small molecules to perturb plant circadian clock function through TTFL components. Studies using small molecule clock modulators have been instrumental for revealing the role of post-translational modification in the clock, or the metabolite-dependent clock input pathway, as well as for controlling clock-dependent flowering time.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Plantas/genética , Plantas/metabolismo
6.
Biosci Biotechnol Biochem ; 86(12): 1623-1630, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149326

RESUMO

Nonhost resistance (NHR) is the most robust and durable resistance in plants, but its spatiotemporal regulation is poorly understood. The circadian clock functions in a tissue-specific manner and regulates individual physiological processes in plants. Using mutant and RNA-seq analyses, we revealed a role of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) in tissue-specific and time-of-day-specific regulation of NHR to Pyricularia oryzae (syn. Magnaporthe oryzae) in Arabidopsis thaliana (Arabidopsis). Targeted perturbation of CCA1 function in epidermis compromised time-of-day-specific regulation of NHR to P. oryzae in Arabidopsis. RNA-seq analysis showed that P. oryzae inoculation alters the transcriptome in penetration 2 (pen2) plants and identified POWDERY MILDEW RESISTANCE 5 (PMR5) as a candidate gene of direct targets of CCA1. Time-of-day-specific penetration resistance to P. oryzae was reduced in Arabidopsis pen2 pmr5 mutant plants. These findings suggest that epidermal CCA1 and PMR5 contribute to the establishment of time-of-day-specific NHR to P. oryzae in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Relógios Circadianos/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Epiderme/metabolismo , Ritmo Circadiano , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(23): 11528-11536, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31097584

RESUMO

The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Caseína Quinase I/genética , Relógios Circadianos/genética , Fatores de Transcrição/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas/genética , Fosforilação/genética , Processamento de Proteína Pós-Traducional/genética , Transcrição Gênica/genética
8.
Biosci Biotechnol Biochem ; 84(5): 970-979, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31985350

RESUMO

Plants flower under appropriate day-length conditions by integrating temporal information provided by the circadian clock with light and dark information from the environment. A sub-group of plant specific circadian clock-associated PSEUDO-RESPONSE REGULATOR (PRR) genes (PRR7/PRR3 sub-group) controls flowering time both in long-day and short-day plants; however, flowering control by the other two PRR gene sub-groups has been reported only in Arabidopsis thaliana (Arabidopsis), a model long-day plant. Here, we show that an Arabidopsis PRR9/PRR5 sub-group gene can control flowering time (heading date) in rice, a short-day plant. Although PRR5 promotes flowering in Arabidopsis, transgenic rice overexpressing Arabidopsis PRR5 caused late flowering. Such transgenic rice plants produced significantly higher biomass, but not grain yield, due to the late flowering. Concomitantly, expression of Hd3a, a rice florigen gene, was reduced in the transgenic rice.Abbreviations: CCT: CONSTANS, CONSTANS-LIKE, and TOC1; HD: HEADING DATE; LHY: LATE ELONGATED HYPOCOTYL; Ppd: photoperiod; PR: pseudo-receiver; PRR: PSEUDO-RESPONSE REGULATOR; TOC1: TIMING OF CAB EXPRESSION 1; ZTL: ZEITLUPE.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ritmo Circadiano/genética , Flores/crescimento & desenvolvimento , Flores/genética , Oryza/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Relógios Circadianos/genética , Florígeno/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Oryza/crescimento & desenvolvimento , Fenótipo , Fotoperíodo , Filogenia , Plantas Geneticamente Modificadas
9.
Plant Cell Physiol ; 60(11): 2360-2368, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529098

RESUMO

The circadian clock is a timekeeping system for regulation of numerous biological daily rhythms. One characteristic of the circadian clock is that period length remains relatively constant in spite of environmental fluctuations, such as temperature change. Here, using the curated collection of in-house small molecule chemical library (ITbM chemical library), we show that small molecule 3,4-dibromo-7-azaindole (B-AZ) lengthened the circadian period of Arabidopsis thaliana (Arabidopsis). B-AZ has not previously been reported to have any biological and biochemical activities. Target identification can elucidate the mode of action of small molecules, but we were unable to make a molecular probe of B-AZ for target identification. Instead, we performed other analysis, gene expression profiling that potentially reveals mode of action of molecules. Short-term treatment of B-AZ decreased the expression of four dawn- and morning-phased clock-associated genes, CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY), PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7. Consistently, amounts of PRR5 and TIMING OF CAB EXPRESSION 1 (TOC1) proteins, transcriptional repressors of CCA1, LHY, PRR9 and PRR7 were increased upon B-AZ treatment. B-AZ inhibited Casein Kinase 1 family (CK1) that phosphorylates PRR5 and TOC1 for targeted degradation. A docking study and molecular dynamics simulation suggested that B-AZ interacts with the ATP-binding pocket of human CK1 delta, whose amino acid sequences are highly similar to those of Arabidopsis CK1. B-AZ-induced period-lengthening effect was attenuated in prr5 toc1 mutants. Collectively, this study provides a novel and simple structure CK1 inhibitor that modulates circadian clock via accumulation of PRR5 and TOC1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Relógios Circadianos/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/genética
10.
EMBO J ; 34(15): 1992-2007, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26069325

RESUMO

In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size.


Assuntos
Arabidopsis/fisiologia , Ciclo Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Organogênese/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Espectrometria de Massas , Análise em Microsséries , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
12.
Plant Cell ; 28(3): 696-711, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26941090

RESUMO

The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Hipocótilo/genética , Hipocótilo/fisiologia , Mutação , Motivos de Nucleotídeos , Regiões Promotoras Genéticas/genética , Análise de Sequência de RNA , Fatores de Transcrição/genética
13.
Plant Cell Physiol ; 57(5): 1085-97, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27012548

RESUMO

Plant circadian clocks control the timing of a variety of genetic, metabolic and physiological processes. Recent studies revealed a possible molecular mechanism for circadian clock regulation. Arabidopsis thaliana (Arabidopsis) PSEUDO-RESPONSE REGULATOR (PRR) genes, including TIMING OF CAB EXPRESSION 1 (TOC1), encode clock-associated transcriptional repressors that act redundantly. Disruption of multiple PRR genes results in drastic phenotypes, including increased biomass and abiotic stress tolerance, whereas PRR single mutants show subtle phenotypic differences due to genetic redundancy. In this study, we demonstrate that constitutive expression of engineered PRR5 (PRR5-VP), which functions as a transcriptional activator, can increase biomass and abiotic stress tolerance, similar to prr multiple mutants. Concomitant analyses of relative growth rate, flowering time and photosynthetic activity suggested that increased biomass of PRR5-VP plants is mostly due to late flowering, rather than to alterations in photosynthetic activity or growth rate. In addition, genome-wide gene expression profiling revealed that genes related to cold stress and water deprivation responses were up-regulated in PRR5-VP plants. PRR5-VP plants were more resistant to cold, drought and salinity stress than the wild type, whereas ft tsf and gi, well-known late flowering and increased biomass mutants, were not. These findings suggest that attenuation of PRR function by a single transformation of PRR-VP is a valuable method for increasing biomass as well as abiotic stress tolerance in Arabidopsis. Because the PRR gene family is conserved in vascular plants, PRR-VP may regulate biomass and stress responses in many plants, but especially in long-day annual plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Relógios Circadianos , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Biomassa , Secas , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Luz , Fenótipo , Salinidade , Estresse Fisiológico , Fatores de Transcrição/genética
14.
Plant Cell Physiol ; 56(4): 594-604, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25432974

RESUMO

Flowering plants produce a meristem at the shoot tip where specialized tissue generates shoot apical meristems at the appropriate time to differentiate into reproductive structures, pollinate and efficiently generate seeds. The complex set of molecular and phenological events culminating in development of a flowering meristem is referred to as 'flowering time'. Flowering time affects plant productivity because plants dedicate energy to produce flowers and seeds rather than vegetative tissue once the molecular decision to initiate flowering has been taken. Thus, initiation of flowering time is an important decision in plants, especially in annual plants including crops. Humans have introduced crops into latitudes and climate areas far from their origin or natural ecosystem, requiring in many cases modification of native flowering times. Recent molecular-genetic studies shed light on the genetic basis related to such introductions. In this review, recent progress regarding crop introductions and their genetic bases are summarized, as well as the potential of other agricultural plants to be introduced into different climatic zones.


Assuntos
Adaptação Fisiológica , Produtos Agrícolas/fisiologia , Meio Ambiente , Fotoperíodo , Adaptação Fisiológica/genética , Produtos Agrícolas/genética , Flores/fisiologia
15.
Plant Cell Physiol ; 56(4): 640-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25588388

RESUMO

Stomatal movements are regulated by multiple environmental signals. Recent investigations indicate that photoperiodic flowering components, such as CRY, GI, CO, FT and TSF, are expressed in guard cells and positively affect stomatal opening in Arabidopsis thaliana. Here we show that SOC1, which encodes a MADS box transcription factor and integrates multiple flowering signals, also exerts a positive effect on stomatal opening. FLC encodes a potent repressor of FT and SOC1, and FRI acts as an activator of FLC. Thus, we examined stomatal phenotypes in FRI-Col, which contains an active FRI allele of accession Sf-2 by introgression. We found higher expression of FLC and lower expression of FT, SOC1 and TSF in guard cells from FRI-Col than in those from Col. Light-induced stomatal opening was significantly suppressed in FRI-Col. Interestingly, vernalization of FRI-Col partially restored light-induced stomatal opening, concomitant with a decrease of FLC and increase of FT, SOC1 and TSF. Furthermore, we observed the constitutive open-stomata phenotype in transgenic plants overexpressing SOC1-GFP (green fluorescent protein) in guard cells (SOC1-GFP overexpressor), and found that light-induced stomatal opening was significantly suppressed in a soc1 knockout mutant. RNA sequencing using epidermis from the SOC1-GFP overexpressor revealed that the expression levels of several genes involved in stomatal opening, such as BLUS1 and the plasma membrane H(+)-ATPases, were higher than those in background plants. From these results, we conclude that SOC1 is involved in the regulation of stomatal opening via transcriptional regulation in guard cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/metabolismo , Proteínas de Domínio MADS/metabolismo , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Luz , Mutação/genética , Fenótipo , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos da radiação , Regulação para Cima/efeitos da radiação
16.
Proc Natl Acad Sci U S A ; 109(42): 17123-8, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23027938

RESUMO

The circadian clock is an endogenous time-keeping mechanism that enables organisms to adapt to external daily cycles. The clock coordinates biological activities with these cycles, mainly through genome-wide gene expression. However, the exact mechanism underlying regulation of circadian gene expression is poorly understood. Here we demonstrated that an Arabidopsis PSEUDO-RESPONSE REGULATOR 5 (PRR5), which acts in the clock genetic circuit, directly regulates expression timing of key transcription factors involved in clock-output pathways. A transient expression assay and ChIP-quantitative PCR assay using mutated PRR5 indicated that PRR5 associates with target DNA through binding at the CCT motif in vivo. ChIP followed by deep sequencing coupled with genome-wide expression profiling revealed the direct-target genes of PRR5. PRR5 direct-targets include genes encoding transcription factors involved in flowering-time regulation, hypocotyl elongation, and cold-stress responses. PRR5-target gene expression followed a circadian rhythm pattern with low, basal expression from noon until midnight, when PRR9, PRR7, and PRR5 were expressed. ChIP-quantitative PCR assays indicated that PRR7 and PRR9 bind to the direct-targets of PRR5. Genome-wide expression profiling using a prr9 prr7 prr5 triple mutant suggests that PRR5, PRR7, and PRR9 repress these targets. Taken together, our results illustrate a genetic network in which PRR5, PRR7, and PRR9 directly regulate expression timing of key transcription factors to coordinate physiological processes with daily cycles.


Assuntos
Proteínas de Arabidopsis/fisiologia , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Imunoprecipitação da Cromatina , Relógios Circadianos/fisiologia , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Mutação/genética , Reação em Cadeia da Polimerase , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
17.
Plant Cell ; 23(2): 486-98, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21357491

RESUMO

In Arabidopsis thaliana, central circadian clock genes constitute several feedback loops. These interlocking loops generate an ~24-h oscillation that enables plants to anticipate the daily diurnal environment. The identification of additional clock proteins can help dissect the complex nature of the circadian clock. Previously, LIGHT-REGULATED WD1 (LWD1) and LWD2 were identified as two clock proteins regulating circadian period length and photoperiodic flowering. Here, we systematically studied the function of LWD1/2 in the Arabidopsis circadian clock. Analysis of the lwd1 lwd2 double mutant revealed that LWD1/2 plays dual functions in the light input pathway and the regulation of the central oscillator. Promoter:luciferase fusion studies showed that activities of LWD1/2 promoters are rhythmic and depend on functional PSEUDO-RESPONSE REGULATOR9 (PRR9) and PRR7. LWD1/2 is also needed for the expression of PRR9, PRR7, and PRR5. LWD1 is preferentially localized within the nucleus and associates with promoters of PRR9, PRR5, and TOC1 in vivo. Our results support the existence of a positive feedback loop within the Arabidopsis circadian clock. Further mechanistic studies of this positive feedback loop and its regulatory effects on the other clock components will further elucidate the complex nature of the Arabidopsis circadian clock.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Relógios Circadianos , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Luz , Mutação , Regiões Promotoras Genéticas , RNA de Plantas/genética , Fatores de Transcrição/genética
18.
Sci Adv ; 10(39): eadq0187, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331704

RESUMO

The period of circadian clocks is maintained at close to 24 hours over a broad range of physiological temperatures due to temperature compensation of period length. Here, we show that the quantitative control of the core clock proteins TIMING OF CAB EXPRESSION 1 [TOC1; also known as PSEUDO-RESPONSE REGULATOR 1 (PRR1)] and PRR5 is crucial for temperature compensation in Arabidopsis thaliana. The prr5 toc1 double mutant has a shortened period at higher temperatures, resulting in weak temperature compensation. Low ambient temperature reduces amounts of PRR5 and TOC1. In low-temperature conditions, PRR5 and TOC1 interact with LOV KELCH PROTEIN 2 (LKP2), a component of the E3 ubiquitin ligase Skp, Cullin, F-box (SCF) complex. The lkp2 mutations attenuate low temperature-induced decrease of PRR5 and TOC1, and the mutants display longer period only at lower temperatures. Our findings reveal that the circadian clock maintains its period length despite ambient temperature fluctuations through temperature- and LKP2-dependent control of PRR5 and TOC1 abundance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Relógios Circadianos/fisiologia , Mutação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteólise
19.
Plant Cell ; 22(3): 594-605, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20233950

RESUMO

An interlocking transcriptional-translational feedback loop of clock-associated genes is thought to be the central oscillator of the circadian clock in plants. TIMING OF CAB EXPRESSION1 (also called PSEUDO-RESPONSE REGULATOR1 [PRR1]) and two MYB transcription factors, CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), play pivotal roles in the loop. Genetic studies have suggested that PRR9, PRR7, and PRR5 also act within or close to the loop; however, their molecular functions remain unknown. Here, we demonstrate that PRR9, PRR7, and PRR5 act as transcriptional repressors of CCA1 and LHY. PRR9, PRR7, and PRR5 each suppress CCA1 and LHY promoter activities and confer transcriptional repressor activity to a heterologous DNA binding protein in a transient reporter assay. Using a glucocorticoid-induced PRR5-GR (glucorticoid receptor) construct, we found that PRR5 directly downregulates CCA1 and LHY expression. Furthermore, PRR9, PRR7, and PRR5 associate with the CCA1 and LHY promoters in vivo, coincident with the timing of decreased CCA1 and LHY expression. These results suggest that the repressor activities of PRR9, PRR7, and PRR5 on the CCA1 and LHY promoter regions constitute the molecular mechanism that accounts for the role of these proteins in the feedback loop of the circadian clock.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ritmo Circadiano/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plasmídeos , Regiões Promotoras Genéticas , Proteínas Repressoras , Fatores de Transcrição/genética , Transcrição Gênica , Transfecção
20.
Biosci Biotechnol Biochem ; 77(4): 747-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23563564

RESUMO

During the last decade, significant research progress in the study of Arabidopsis thaliana has been made in defining the molecular mechanism by which the plant circadian clock regulates flowering time in response to changes in photoperiod. It is generally accepted that the clock-controlled CONSTANS (CO)-FLOWERING LOCUS T (FT)-mediated external coincidence mechanism underlying the photoperiodic control of flowering time is conserved in higher plants, including A. thaliana and Oryza sativa. However, it is also assumed that the mechanism differs considerably in detail among species. Here we characterized the clock-controlled CO-FT pathway in Lotus japonicus (a model legume) in comparison with that of A. thaliana. L. japonicus has at least one FT orthologous gene (named LjFTa), which is induced specifically in long-days and complements the mutational lesion of the A. thaliana FT gene. However, it was speculated that this legume might lack the upstream positive regulator CO. By employing L. japonicus phyB mutant plants, we showed that the photoreceptor mutant displays a phenotype of early flowering due to enhanced expression of LjFTa, suggesting that LjFTa is invovled in the promotion of flowering in L. japonicus. These results are discussed in the context of current knowledge of the flowering in crop legumes such as soybean and garden pea.


Assuntos
Relógios Circadianos , Flores/crescimento & desenvolvimento , Lotus/metabolismo , Fotoperíodo , Proteínas de Plantas/metabolismo , Homologia de Sequência do Ácido Nucleico , Relógios Circadianos/efeitos da radiação , Produtos Agrícolas , Flores/genética , Flores/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Lotus/genética , Lotus/crescimento & desenvolvimento , Lotus/fisiologia , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa