Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Photochem Photobiol Sci ; 23(2): 271-284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305951

RESUMO

Ultraviolet A (UVA) radiation, present in sunlight, can induce cell redox imbalance leading to cellular damage and even cell death, compromising skin health. Here, we evaluated the in vitro antioxidant and photochemoprotective effect of dithiothreitol (DTT). DTT neutralized the free radicals 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+), 2,2-diphenyl-1-picrylhydrazyl (DPPH·), and superoxide anion (O2·-) in in vitro assays, as well as the ferric ion (Fe3+) in the ferric reducing antioxidant power (FRAP) assay. We also evaluated the effect of DTT pre-treatment in L929 dermal fibroblasts and DTT (50 and 100 µM) led to greater cell viability following UVA-irradiation compared to cells that were untreated. Furthermore, the pre-treatment of cells with DTT prevented the increase of intracellular reactive oxygen species (ROS) production, including hydrogen peroxide (H2O2), lipid peroxidation, and DNA condensation, as well as the decrease in mitochondrial membrane potential (Δψm), that occurred following irradiation in untreated cells. The endogenous antioxidant system of cells was also improved in irradiated cells that were DTT pre-treated compared to the untreated cells, as the activity of the superoxide dismutase (SOD) and catalase (CAT) enzymes remained as high as non-irradiated cells, while the activity levels were depleted in the untreated irradiated cells. Furthermore, DTT reduced necrosis in UVA-irradiated fibroblasts. Together, these results showed that DTT may have promising use in the prevention of skin photoaging and photodamage induced by UVA, as it provided photochemoprotection against the harmful effects of this radiation, reducing oxidative stress and cell death, due mainly to its antioxidant capacity.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ditiotreitol/farmacologia , Ditiotreitol/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta , Necrose , Fibroblastos
2.
Molecules ; 29(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611905

RESUMO

The uses of natural compounds, such as essential oils (EOs), are limited due to their instability to light, oxygen and temperature, factors that affect their application. Therefore, improving stability becomes necessary. The objective of this study was to prepare inclusion complexes of Litsea cubeba essential oil (LCEO) with ß-cyclodextrin (ß-CD) using physical mixing (PM), kneading (KN) and co-precipitation (CP) methods and to evaluate the efficiency of the complexes and their physicochemical properties using ATR-FTIR, FT-Raman, DSC and TG. The study also assessed cytotoxicity against human colorectal and cervical cancer cells and antifungal activity against Aspergillus flavus and Fusarium verticillioides. The complexation efficiency results presented significant evidence of LCEO:ß-CD inclusion complex formation, with KN (83%) and CP (73%) being the best methods used in this study. All tested LCEO:ß-CD inclusion complexes exhibited toxicity to HT-29 cells. Although the cytotoxic effect was less pronounced in HeLa tumor cells, LCEO-KN was more active against Hela than non-tumor cells. LCEO-KN and LCEO-CP inclusion complexes were efficient against both toxigenic fungi, A. flavus and F. verticillioides. Therefore, the molecular inclusion of LCEO into ß-CD was successful, as well as the preliminary biological results, evidencing that the ß-CD inclusion process may be a viable alternative to facilitate and increase future applications of this EO as therapeutic medication, food additive and natural antifungal agent.


Assuntos
Litsea , Neoplasias do Colo do Útero , Humanos , Feminino , Antifúngicos/farmacologia , Aspergillus flavus , Aditivos Alimentares
3.
Arch Virol ; 168(5): 153, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140819

RESUMO

New antiviral agents for the treatment of herpes simplex virus type 1 (HSV-1) infection, which causes a highly prevalent and incurable disease, are needed. Here, we report for the first time the in vitro anti-HSV-1 activity of two dibenzylideneketone compounds: DBK1 and DBK2. DBK1 demonstrated virucidal activity, and high-resolution scanning electron microscopy showed that it caused morphological changes in the HSV-1 envelope. DBK2 was able to reduce HSV-1 plaque size in vitro. The DBKs are promising anti-HSV-1 candidates, as they exhibit low toxicity and exert an antiviral effect by acting at the early stages of HSV-1-host cell interaction.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Herpes Simples/tratamento farmacológico
4.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040656

RESUMO

AIM: This study aims to incorporate alginate microparticles containing berberine and fluconazole into two different types of pharmaceutical formulations, to subsequently evaluate the antifungal activity against Candida albicans. METHODS AND RESULTS: Alginate microparticles containing BBR (berberine) and FLU (fluconazole) were produced by the spray-drying technique, characterized and incorporated in two pharmaceutical formulations, a vaginal cream and artificial saliva. Broth microdilution, checkerboard, time-kill curve, and scanning electron microscopy were carried out to determine the antifungal effects of BBR and FLU against C. albicans. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of free BBR were 125 µg ml-1. Synergism between BBR and FLU was demonstrated by a fractional inhibitory concentration index (FICI) = 0.0762. The time-kill curve for the combination BBR + FLU showed a more pronounced decrease in fungal growth in comparison to free drugs, and an antibiofilm effect of BBR occurred in the formation and preformed biofilm. CONCLUSION: Alginate microparticles containing BBR and FLU were obtained and incorporated in a vaginal cream and artificial saliva. Both formulations showed good stability, antifungal effects, and organoleptic characteristics, which suggest that BBR-FLU microparticles in formulations have potential as antifungal therapy.


Assuntos
Berberina , Candidíase , Humanos , Feminino , Fluconazol/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Berberina/farmacologia , Saliva Artificial/farmacologia , Saliva Artificial/uso terapêutico , Cremes, Espumas e Géis Vaginais/farmacologia , Cremes, Espumas e Géis Vaginais/uso terapêutico , Candidíase/microbiologia , Candida albicans , Testes de Sensibilidade Microbiana , Alginatos/farmacologia , Sinergismo Farmacológico , Farmacorresistência Fúngica
5.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175359

RESUMO

Breast cancer is the most common type of cancer and the leading cause of cancer mortality among women worldwide. Considering the limitations of the current treatments available, we analyzed the in vitro cytotoxic potential of ((4-Fluoro-phenyl)-{2-[(1-phenyl-9H-ß-carboline-3-carbonyl)-amino]-ethylamino}-methyl)-phosphonic acid dibutyl ester (BCP-1) in breast cancer cells (MCF-7 and MDA-MB-231) and in a non-tumor breast cell line (MCF-10A). BCP-1 has an α-aminophosphonate unit linked to the ß-carboline nucleus, and the literature indicates that compounds of these classes have high biological potential. In the present study, the mechanism of action of BCP-1 was investigated through methods of spectrofluorimetry, flow cytometry, and protein expression analysis. It was found that BCP-1 inhibited the proliferation of both cancer cell lines. Furthermore, it induced oxidative stress and cell cycle arrest in G2/M. Upregulation of apoptosis-related proteins such as Bax, cytochrome C, and caspases, as well as a decrease in the anti-apoptotic protein Bcl-2, indicated potential induction of apoptosis in the MDA-MB-231 cells. While in MCF-7 cells, BCP-1 activated the autophagic death pathway, which was demonstrated by an increase in autophagic vacuoles and acidic organelles, in addition to increased expression of LC3I/LC3II and reduced SQSTM1/p62 expression. Further, BCP-1 demonstrated antimetastatic potential by reducing MMP-9 expression and cell migration in both breast cancer cell lines. In conclusion, BCP-1 is a promising candidate for breast cancer chemotherapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pontos de Checagem do Ciclo Celular , Células MCF-7 , Apoptose , Proteínas Reguladoras de Apoptose , Carbolinas/farmacologia , Proliferação de Células , Linhagem Celular Tumoral
6.
Pharm Dev Technol ; 28(6): 559-570, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212475

RESUMO

The environment can modify the physiology and body protective function of the skin. Propolis (PRP) and curcumin (CUR) possess important antioxidant and antimicrobial properties, and they can be administered in a combined way and using photodynamic therapy (PDT). Emulgels can control drug release due to the physicochemical properties of the gel and the emulsion. They constitute a good strategy for achieving an improved platform for the combined delivery of PRP and CUR. There are no other studies of emulgels composed of PRP and CUR and their performance as antimicrobial and skin healing using or not PDT. This study aimed to investigate the effect of Carbopol 934 P (C934P), 974 P (C974P) or polycarbophil (PC) on physicochemical stability, antioxidant activity, drug release profile, antimicrobial activity, and ex vivo skin permeation and retention of emulgels containing PRP and CUR. Formulations containing C974P or PC displayed improved stability and antioxidant activity. They displayed activity against Staphylococcus aureus and modified (extended) drug release, governed mainly by non-Fickian anomalous transport. C974P and PC resulted in improved emulgels for combined CUR and PRP delivery, allowing the drugs to cross the stratum corneum, and permeate the epidermis, reaching the dermis. The selected emulgels are candidates for further studies to prove their action and benefits to skin health.


Assuntos
Anti-Infecciosos , Curcumina , Própole , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Géis/química
7.
Mem Inst Oswaldo Cruz ; 117: e220396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35352776

RESUMO

Over the past years, natural products have been explored in order to find biological active substances to treat various diseases. Regarding their potential action against parasites such as trypanosomatids, specially Trypanosoma cruzi and Leishmania spp., much advance has been achieved. Extracts and purified molecules of several species from genera Piper, Tanacetum, Porophyllum, and Copaifera have been widely investigated by our research group and exhibited interesting antitrypanosomal and antileishmanial activities. These natural compounds affected different structures in parasites, and we believe that the mitochondrion is a strategic target to induce parasite death. Considering that these trypanosomatids have a unique mitochondrion, this cellular target has been extensively studied aiming to find more selective drugs, since the current treatment of these neglected tropical diseases has some challenges such as high toxicity and prolonged treatment time. Here, we summarise some results obtained with natural products from our research group and we further highlighted some strategies that must be considered to finally develop an effective chemotherapeutic agent against these parasites.


Assuntos
Doença de Chagas , Leishmania , Leishmaniose , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Humanos , Leishmaniose/tratamento farmacológico , Mitocôndrias
8.
Phytother Res ; 35(7): 3769-3780, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33792975

RESUMO

Colorectal cancer (CRC) is the second leading cause of cancer-related death globally. In spite of the increasing knowledge on molecular characteristics of different cancer types including CRC, there is limitation in the development of an effective treatment. The present study aimed to verify the antitumor effect of kopsanone, an indole alkaloid. To achieve this, we treated human colon cancer cells (Caco-2 and HCT-116) with kopsanone and analyzed its effects on cell viability, cell-cell adhesion, and actin cytoskeleton organization. In addition, functional assays including micronuclei formation, colony formation, cell migration, and invasiveness were performed. We observed that kopsanone reduced viability and proliferation and induced micronuclei formation of HCT-116 cells. Also, kopsanone inhibited anchorage-dependent colony formation and modulated adherens junctions (AJs), thus increasing the localization of E-cadherin and ß-catenin in the cytosol of the invasive cells. Finally, fluorescence assays showed that kopsanone decreased stress fibers formation and reduced migration but not invasion of HCT-116 cells. Taken together, these findings indicate that kopsanone reduces proliferation and migration of HCT-116 cells via modulation of AJs and can therefore be considered for future in vivo and clinical investigation as potential therapeutic agent for treatment of CRC.


Assuntos
Neoplasias do Colo , Alcaloides Indólicos/farmacologia , Células CACO-2 , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Células HCT116 , Humanos
9.
Drug Dev Res ; 82(2): 230-240, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32996619

RESUMO

In this article, a series of 29 new pyrimidine N-acylhydrazone hybrids were synthesized and evaluated in vitro against Leishmania amazonensis and Trypanosoma cruzi protozoa that cause the neglected diseases cutaneous leishmaniasis and Chagas disease, respectively. Eight of the target compounds showed significant antiprotozoal activities with IC50 values in 4.3-33.6 µM range. The more active compound 4f exhibited selectivity index greater than 15 and drug-like properties based on Lipinski's rule.


Assuntos
Antiparasitários/farmacologia , Hidrazonas/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Pirimidinas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiparasitários/química , Humanos , Hidrazonas/química , Leishmania braziliensis/fisiologia , Pirimidinas/química , Trypanosoma cruzi/fisiologia
10.
J Environ Sci Health B ; 56(4): 387-395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33645426

RESUMO

The purpose of this study was to determine the chemical profile of Litsea cubeba essential oil, carry out an in vitro evaluation of its antioxidant potential and its cytotoxicity, as well as its antifungal and antimicotoxigenic activities against Fusarium verticillioides. Most of the compounds observed in the EO were neral (32.75%) and geranial (37.67%). The radical scavenging capacity of 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid was 104.4 and 56.4 mmol Trolox mg-1, respectively, indicating good antioxidant activity. The EO studied by us revealed cytotoxic effect against HT-29 and HeLa cancer cells. The Minimum Inhibitory and Minimum Fungicidal Concentrations against F. verticillioides were both 125 µg mL-1. Morphological investigation, performed by fluorescence microscopy and scanning electron microscopy, showed that hyphae and microconidia structures underwent changes after treatment with the EO. Analyses performed with the EO strongly reduced the mycelial development of F. verticillioides and the synthesis of fumonisins B1 and B2 in dose-dependence effect compared (P < 0.01) with the fungal control (105 conidia mL-1) and positive control (fludioxonil + metalaxyl-M). Thus, the results obtained in vitro suggest that L. cubeba EO has excellent antioxidant, fungicidal, and antimycotoxigenic effects.


Assuntos
Antifúngicos/farmacologia , Antioxidantes/farmacologia , Fusarium/efeitos dos fármacos , Litsea/química , Óleos Voláteis/farmacologia , Monoterpenos Acíclicos/análise , Antifúngicos/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Relação Dose-Resposta a Droga , Fumonisinas/metabolismo , Fusarium/metabolismo , Células HT29 , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Óleos Voláteis/administração & dosagem , Óleos Voláteis/química
11.
Photochem Photobiol Sci ; 18(2): 487-494, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30534717

RESUMO

Chagas is a parasitic endemic disease caused by the protozoan Trypanosoma cruzi. It represents a strong threat to public health due to its strong resistance against commonly available drugs. We studied the in vitro ability to inactivate the trypomastigote form of this parasite using photodynamic inactivation of microorganisms (or antimicrobial Photodynamic Therapy, aPDT). For this, we chose to use the photosensitizer hypericin (Hyp) formulated in ethanol/water (1% v/v) and Hyp loaded in the dispersion of different aqueous nanocarrier systems. These included polymeric micelles of F-127 and P-123 (both Pluronic™ surfactants), and liposomal vesicles of phospholipid 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). These systems with Hyp had their activity compared against trypomastigote forms under light and in the dark. Hyp revealed a high level of effectiveness to eradicate protozoa in vitro. Samples at concentrations higher than 0.8 µmol L-1 of Hyp in Pluronic micelles showed efficacy even in the dark, with the EC50 around (6-8) µmol L-1. Therefore, Hyp/Pluronics can be used also as a chemotherapeutic agent. The best result for EC50 is at approximately 0.31 µmol L-1 for illuminated systems of Hyp in F-127 micelles. For Hyp in P-123 micelles under light, the results also led to a low EC50 value of 0.36 µmol L-1. The highest value of EC50 was 2.22 µmol L-1, which was found for Hyp/DPPC liposomes under light. For the Hyp-free (ethanol/water, 1% v/v)/illuminated group, the EC50 value was 0.37 µmol L-1, which also is a value that shows effectiveness. However, in free-form, Hyp is not protected against blood components, unlike when Hyp is loaded into the nanocarriers.


Assuntos
Portadores de Fármacos/química , Nanoestruturas/química , Perileno/análogos & derivados , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/efeitos da radiação , Antracenos , Micelas , Perileno/química , Perileno/farmacologia , Poloxâmero/análogos & derivados , Poloxâmero/química
12.
Parasitol Res ; 118(3): 977-989, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30694414

RESUMO

Despite many efforts, the currently available treatments for leishmaniasis are not fully effective. To discover new medications, drug repurposing arises as a promising strategy. We present data that supports the use of the antidepressant clomipramine against Leishmania amazonensis. The drug presented selective activity at micromolar range against both the parasite forms and stimulated nitric oxide production in host macrophages. Regarding the mechanism of action, clomipramine led parasites do mitochondrial depolarization, which coupled with the inhibition of trypanothione reductase induced strong oxidative stress in the parasites. The effects observed in promastigotes included lipoperoxidation, plasma membrane permeabilization, and apoptosis hallmarks (i.e., DNA fragmentation, phosphatidylserine exposure, and cell shrinkage). The mechanism of action in both parasitic forms was quite similar, but amastigotes also exhibited energetic stress, reflected by a reduction of adenosine triphosphate levels. Such differential effects might be attributable to the metabolic particularities of each form of the parasitic. Ultrastructural alterations of the endomembrane system and autophagy were also observed, possibly indicating an adaptive response to oxidative stress. Our results suggest that clomipramine interferes with the redox metabolism of L. amazonensis. In spite of the cellular responses to recover the cellular homeostasis, parasites underwent programmed cell death.


Assuntos
Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Clomipramina/farmacologia , Leishmania/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Antidepressivos Tricíclicos/farmacologia , Linhagem Celular , Macrófagos/efeitos dos fármacos , Camundongos
13.
Intervirology ; 61(1): 14-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001535

RESUMO

BACKGROUND/AIMS: Parthenolide is a sesquiterpene lactone that is present in plants of the Tanacetum genus, for which many biological effects have already been reported, including antiherpetic activity. Although the effectiveness of parthenolide against Herpes simplex virus 1 (HSV-1) has already been demonstrated, such findings are still controversial. The objective of this study was to investigate the ways in which parthenolide exerts anti-HSV-1 activity. METHODS: The cytotoxicity and antiviral activity of parthenolide were determined by the MTT method and plaque reduction assay, respectively. The expression of cell and viral proteins during the treatment of infected cells was investigated by Western blot. RESULTS: Both strains of HSV-1 were sensitive to parthenolide, and parthenolide was active only after penetration of the virus into the host cell. The expression of p65 protein decreased, the expression of caspases 8 and 9 increased, and the expression of c-Jun N-terminal kinase (JNK) and p38 protein was altered in infected cells after parthenolide treatment, resulting in lower cell survival. The low expression of viral proteins gB, gD, and ICP0 confirmed the reduction of HSV-1 particle production. CONCLUSION: Parthenolide exerts anti-HSV-1 activity by impairing cell viability, which consequently interferes with the efficient infection and production of new viral particles.


Assuntos
Antivirais/farmacologia , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Sesquiterpenos/farmacologia , Tanacetum/química , Animais , Caspases/efeitos dos fármacos , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Humanos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Componentes Aéreos da Planta/química , Células Vero , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
14.
Bioorg Med Chem ; 26(14): 4065-4072, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30100019

RESUMO

Continuous efforts have been made to discover new drugs for the treatment of Chagas' disease, human African trypanosomiasis, and leishmaniasis. We have previously reported the synthesis and antileishmanial and antitrypanosomal (Y strain) properties of 2,3-disubstituted quinoxalines. Considering their promising antiparasitic potential, the present study was conducted to expand our search and take advantage of high-throughput assays to investigate the effects of quinoxaline derivatives against Leishmania donovani, Trypanosoma brucei, and Trypanosoma cruzi (Tulahuen strain). These compounds were active against the kinetoplastid parasites that were evaluated. The 2-chloro-3-methylsulfoxylsulfonyl and 2-chloro-3-methylsulfinyl quinoxalines were the most potent, and some of these derivatives were even more active than the reference drugs. Although the 2,3-diaryl-substituted quinoxalines were not active against all of the parasites, they were active against T. brucei and intracellular amastigotes of T. cruzi, without interfering with mammalian cell viability. These compounds presented encouraging results that will guide our future studies on in vivo bioassays towards the mode of action.


Assuntos
Antiprotozoários/farmacologia , Leishmania donovani/efeitos dos fármacos , Quinoxalinas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
15.
Exp Parasitol ; 189: 19-27, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29726395

RESUMO

Combination therapies based on the available drugs have been proposed as promising therapeutic alternatives for many diseases. Clomipramine (CLO) has been found to modify the evolution of the experimental infection. The objective of this study was to evaluate the combined effect of benznidazole (BZ) and clomipramine (CLO) against different life-stages of Trypanosoma cruzi in vitro and their efficacy in a murine model. Life-stages of T. cruzi, BZ-partially-resistant (Y) strain, were incubated with BZ and CLO and isobolograms and combination index (CI) were obtained. Swiss mice were infected with trypomastigotes and different treatment schedules were performed, each of which consisted of 30 consecutive daily doses. Treatment efficacy was evaluated by comparing parasitemia, qPCR, survival and histological analysis. These results were analyzed using multivariate analysis to determine the combined effect of the drugs in vivo. CLO + BZ showed synergistic activity in vitro against the clinically relevant life-stages of T. cruzi. The most susceptible forms were the intracellular amastigotes (CI: 0.20), followed by trypomastigotes (CI: 0.60), with no toxicity upon mammalian cells. The combination of both drugs CLO (1.25 mg/kg) and BZ (6.25 mg/kg), in vivo, significantly diminished the parasitic load in blood and the mortality rate. CLO + BZ presented a similar inflammatory response in cardiac and skeletal muscle (amount of inflammatory cells) to BZ (6.25 mg/kg). Finally, the results from the principal component analysis reaffirmed that both drugs administered in combination presented higher activity compared with the individual administration in the acute experimental model.


Assuntos
Doença de Chagas/tratamento farmacológico , Clomipramina/farmacologia , Nitroimidazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Clomipramina/uso terapêutico , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Concentração Inibidora 50 , Masculino , Camundongos , Análise Multivariada , Músculo Esquelético/parasitologia , Músculo Esquelético/patologia , Miocárdio/patologia , Nitroimidazóis/uso terapêutico , Parasitemia/tratamento farmacológico , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real , Tripanossomicidas/uso terapêutico
16.
Exp Parasitol ; 195: 78-86, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30385267

RESUMO

Currently, available treatment options for leishmaniasis are limited and unsatisfactory. In a previous study, a quinoline derivative (AMQ-j), exhibited a strong effect against Leishmania amazonensis and its antileishmanial activity was preliminarily associated with mitochondrial dysfunction. The present study further explores the antileishmanial effect of this compound against L. amazonensis, as well as determines the main cellular processes involved in the death of the parasite. Moreover, this study evaluated the in vivo effect of the AMQ-j in BALB/c mice experimentally infected by L. amazonensis. The results showed that the compound AMQ-j induces a set of morphological and biochemical features that could correlate with both autophagy-related and apoptosis-like processes, indicating intense mitochondrial swelling, a collapse of the mitochondrial membrane potential, an abnormal chromatin condensation, an externalization of phosphatidylserine, an accumulation of lipid bodies, a disorganization of cell cycle, a formation of autophagic vacuoles, and an increase of acidic compartments. Treatment with AMQ-j through an intralesional route was effective in reducing the parasite burden and size of the lesion. No significant increase in the serum levels of hepatic or renal damage toxicity markers was observed. These findings contribute to the understanding of the mode of action of quinoline derivatives involved in the death of Leishmania parasites and encourage new studies in other experimental models of Leishmania infection.


Assuntos
Aminoquinolinas/farmacologia , Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Aminoquinolinas/uso terapêutico , Aminoquinolinas/toxicidade , Animais , Antiprotozoários/uso terapêutico , Antiprotozoários/toxicidade , Ciclo Celular/efeitos dos fármacos , Chlorocebus aethiops , Creatinina/metabolismo , Orelha Externa/parasitologia , Orelha Externa/patologia , Feminino , Concentração Inibidora 50 , Rim/efeitos dos fármacos , Leishmania mexicana/citologia , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/ultraestrutura , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Células Vero
17.
Apoptosis ; 22(1): 57-71, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27761752

RESUMO

Leishmaniasis is a neglected tropical disease that affects millions of people worldwide. Current therapies mainly rely on antimonial drugs that are inadequate because of their high toxicity and increased drug resistance. An urgent need exists to discover new, more effective, more affordable, and more target-specific drugs. Pathways that are associated with apoptosis-like cell death have been identified in unicellular eukaryotes, including protozoan parasites. In the present study, we studied the mechanism of cell death that is induced by A3K2A3 against L. amazonensis. A3K2A3 is a dibenzylideneacetone that has an acyclic dienone that is attached to aryl groups in both ß-positions, which is similar to curcuminoids and chalcone structures. This compound was previously shown to be safe with regard to cytotoxicity and active against the parasite. Biochemical and morphological approaches were used in the present study. The results suggested that A3K2A3 caused mitochondrial dysfunction in L. amazonensis promastigotes, leading to mechanisms of cell death that share some common phenotypic features with metazoan apoptosis, such as an increase in reactive oxygen species production, a decrease in the adenosine triphosphate ratio, phosphatidylserine exposure, a decrease in cell volume, caspase production, and DNA fragmentation. Altogether, these findings indicate that apoptosis can indeed be triggered by chemotherapeutic agents.


Assuntos
Apoptose/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Pentanonas/administração & dosagem , Trifosfato de Adenosina/metabolismo , Animais , Fragmentação do DNA/efeitos dos fármacos , Humanos , Leishmania/patogenicidade , Leishmaniose/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
18.
Planta Med ; 83(6): 509-518, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27706530

RESUMO

Herpes simplex virus infections persist throughout the lifetime of the host and affect more than 80 % of the humans worldwide. The intensive use of available therapeutic drugs has led to undesirable effects, such as drug-resistant strains, prompting the search for new antiherpetic agents. Although diverse bioactivities have been identified in Schinus terebinthifolia, its antiviral activity has not attracted much attention. The present study evaluated the antiherpetic effects of a crude hydroethanolic extract from the stem bark of S. terebinthifolia against Herpes simplex virus type 1 in vitro and in vivo as well as its genotoxicity in bone marrow in mammals and established the chemical composition of the crude hydroethanolic extract based on liquid chromatography-diode array detector-mass spectrometry and MS/MS. The crude hydroethanolic extract inhibited all of the tested Herpes simplex virus type 1 strains in vitro and was effective in the attachment and penetration stages, and showed virucidal activity, which was confirmed by transmission electron microscopy. The micronucleus test showed that the crude hydroethanolic extract had no genotoxic effect at the concentrations tested. The crude hydroethanolic extract afforded protection against lesions that were caused by Herpes simplex virus type 1 in vivo. Liquid chromatography-diode array detector-mass spectrometry and MS/MS identified 25 substances, which are condensed tannins mainly produced by a B-type linkage and prodelphinidin and procyanidin units.


Assuntos
Anacardiaceae/química , Antivirais/farmacocinética , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cromatografia Líquida , Feminino , Herpes Simples/virologia , Herpesvirus Humano 1/ultraestrutura , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas em Tandem , Taninos/análise , Taninos/química , Células Vero
19.
Antimicrob Agents Chemother ; 60(6): 3433-44, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001812

RESUMO

Leishmaniasis is endemic in 98 countries and territories worldwide. The therapies available for leishmaniasis have serious side effects, thus prompting the search for new therapies. The present study investigated the antileishmanial activities of 2,3-diarylsubstituted quinoxaline derivatives against Leishmania amazonensis The antiproliferative activities of 6,7-dichloro-2,3-diphenylquinoxaline (LSPN329) and 2,3-di-(4-methoxyphenyl)-quinoxaline (LSPN331) against promastigotes and intracellular amastigotes were assessed, and the cytotoxicities of LSPN329 and LSPN331 were determined. Morphological and ultrastructural alterations were examined by electron microscopy, and biochemical alterations, reflected by the mitochondrial membrane potential (ΔΨm), mitochondrial superoxide anion (O2·(-)) concentration, the intracellular ATP concentration, cell volume, the level of phosphatidylserine exposure on the cell membrane, cell membrane integrity, and lipid inclusions, were evaluated. In vivo antileishmanial activity was evaluated in a murine cutaneous leishmaniasis model. Compounds LSPN329 and LSPN331 showed significant selectivity for promastigotes and intracellular amastigotes and low cytotoxicity. In promastigotes, ultrastructural alterations were observed, including an increase in lipid inclusions, concentric membranes, and intense mitochondrial swelling, which were associated with hyperpolarization of ΔΨm, an increase in the O2·(-) concentration, decreased intracellular ATP levels, and a decrease in cell volume. Phosphatidylserine exposure and DNA fragmentation were not observed. The cellular membrane remained intact after treatment. Thus, the multifactorial response that was responsible for the cellular collapse of promastigotes was based on intense mitochondrial alterations. BALB/c mice treated with LSPN329 or LSPN331 showed a significant decrease in lesion thickness in the infected footpad. Therefore, the antileishmanial activity and mitochondrial mechanism of action of LSPN329 and LSPN331 and the decrease in lesion thickness in vivo brought about by LSPN329 and LSPN331 make them potential candidates for new drug development for the treatment of leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Quinoxalinas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Membrana Celular/fisiologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária , Fosfatidilserinas/metabolismo , Superóxidos/metabolismo
20.
Antimicrob Agents Chemother ; 60(2): 890-903, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26596953

RESUMO

Despite ongoing efforts, the available treatments for Chagas' disease are still unsatisfactory, especially in the chronic phase of the disease. Our previous study reported the strong trypanocidal activity of the dibenzylideneacetones A3K2A1 and A3K2A3 against Trypanosoma cruzi (Z. Ud Din, T. P. Fill, F. F. de Assis, D. Lazarin-Bidóia, V. Kaplum, F. P. Garcia, C. V. Nakamura, K. T. de Oliveira, and E. Rodrigues-Filho, Bioorg Med Chem 22:1121-1127, 2014, http://dx.doi.org/10.1016/j.bmc.2013.12.020). In the present study, we investigated the mechanisms of action of these compounds that are involved in parasite death. We showed that A3K2A1 and A3K2A3 induced oxidative stress in the three parasitic forms, especially trypomastigotes, reflected by an increase in oxidant species production and depletion of the endogenous antioxidant system. This oxidative imbalance culminated in damage in essential cell structures of T. cruzi, reflected by lipid peroxidation and DNA fragmentation. Consequently, A3K2A1 and A3K2A3 induced vital alterations in T. cruzi, leading to parasite death through the three pathways, apoptosis, autophagy, and necrosis.


Assuntos
Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Células Epiteliais/parasitologia , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico/metabolismo , Oxirredução , Pentanonas/farmacologia , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Tripanossomicidas/química , Trypanosoma cruzi/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa