Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Soft Matter ; 18(18): 3546-3556, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35445678

RESUMO

One of the main purposes of smart and multifunctional coatings is to have the versatility to be applied in a wide range of applications. However, the functions of smart materials are often highly limited. In particular, the stimuli-responsive lateral expansion of coatings based on 2D materials has not been reported before. This manuscript describes small two-dimensional graphene oxide (GO) flakes (e.g., thin sheets with a thickness of a few nanometers and much larger lateral dimensions) that act as elementary agents for the formation of smart and multifunctional coatings. The coating can be self-assembled from the GO flakes and disassembled flexibly when required. The coating is stimuli-responsive: upon localized contact with water, it expands and forms wrinkling patterns throughout its whole surface. Evaporating the water allows the wrinkles to disappear; hence, the process is reversible. This stimuli-responsiveness can be controlled to be reduced or completely switched off by temperature or pressure. These features are fundamentally due to the reversible intermolecular interactions among the flakes and favorable packing structure of the coating. The smart coating is shown to be useful for patterned fluidic systems of the desired shapes and the development of channels between fluidic reservoirs via the shortest path. Importantly, these results showed that a simple collection of uniquely 2D elementary agents with small nanoscale thickness can self-assemble into macroscopic materials that perform interactive and multifunctional operations.

2.
Exp Cell Res ; 380(2): 216-233, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039347

RESUMO

Mucopolysaccharidosis II (MPS II) is a lysosomal storage disorder (LSD), caused by iduronate 2-sulphatase (IDS) enzyme dysfunction. The neuropathology of the disease is not well understood, although the neural symptoms are currently incurable. MPS II-patient derived iPSC lines were established and differentiated to neuronal lineage. The disease phenotype was confirmed by IDS enzyme and glycosaminoglycan assay. MPS II neuronal precursor cells (NPCs) showed significantly decreased self-renewal capacity, while their cortical neuronal differentiation potential was not affected. Major structural alterations in the ER and Golgi complex, accumulation of storage vacuoles, and increased apoptosis were observed both at protein expression and ultrastructural level in the MPS II neuronal cells, which was more pronounced in GFAP + astrocytes, with increased LAMP2 expression but unchanged in their RAB7 compartment. Based on these finding we hypothesize that lysosomal membrane protein (LMP) carrier vesicles have an initiating role in the formation of storage vacuoles leading to impaired lysosomal function. In conclusion, a novel human MPS II disease model was established for the first time which recapitulates the in vitro neuropathology of the disorder, providing novel information on the disease mechanism which allows better understanding of further lysosomal storage disorders and facilitates drug testing and gene therapy approaches.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/metabolismo , Modelos Biológicos , Mucopolissacaridose II/metabolismo , Diferenciação Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Mucopolissacaridose II/patologia
3.
Sensors (Basel) ; 20(22)2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203133

RESUMO

Robotic salespeople are often ignored by people due to their weak social presence, and thus have difficulty facilitating sales autonomously. However, for robots that are remotely controlled by humans, there is a need for experienced and trained operators. In this paper, we suggest crowdsourcing to allow general users on the internet to operate a robot remotely and facilitate customers' purchasing activities while flexibly responding to various situations through a user interface. To implement this system, we examined how our developed remote interface can improve a robot's social presence while being controlled by a human operator, including first-time users. Therefore, we investigated the typical flow of a customer-robot interaction that was effective for sales promotion, and modeled it as a state transition with automatic functions by accessing the robot's sensor information. Furthermore, we created a user interface based on the model and examined whether it was effective in a real environment. Finally, we conducted experiments to examine whether the user interface could be operated by an amateur user and enhance the robot's social presence. The results revealed that our model was able to improve the robot's social presence and facilitate customers' purchasing activity even when the operator was a first-time user.


Assuntos
Comportamento do Consumidor , Crowdsourcing , Robótica , Interface Usuário-Computador , Comércio , Humanos
4.
Angew Chem Int Ed Engl ; 59(31): 13086-13092, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32333470

RESUMO

The development of methods to pattern nanocrystals with different sizes and shapes remains a challenge. In this study, we demonstrate a unique class of bottom-up approaches to assemble nanocrystals into patterns. Our approach for patterning nanocrystals focuses on the utilization and control of the chemical reaction of solvents surrounding nanocrystals. The photopolymerization of solvent molecules through a photomask creates time-dependent concentration gradients of the solvents. Dispersed nanocrystals such as silver nanowires (AgNWs) migrate and are gradually organized and integrated into the polymerizing films based on the concentration gradients. The AgNW-embedded film properties are determined by the organized AgNW structures and include light transmission and electrical conductivity. Overall, the demonstrated method is very simple, widely applicable to various nanocrystals and solvents, and can thus contribute to the development of a new class of nanocrystal patterning methods.

5.
Langmuir ; 34(51): 15674-15680, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30485111

RESUMO

In this study, we demonstrate that vertically aligned gold nanowire array electrodes provide rapid ion and electron transport to the electrode-electrolyte interface. The charge-transport properties of the nanowire electrodes were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy under a constant-volume device configuration. The total charge stored in the corresponding devices increases monotonically with the length of the nanowires owing to the concomitant increase in the electroactive real surface area of the electrode. A remarkable feature of the electrodes is that the internal resistance associated with charge transport decreases with increasing nanowire length. The electric double-layer capacitance per unit electroactive surface area remains constant up to high charge/discharge rates. Our results demonstrate that charge migration occurs rapidly on the surfaces of the nanowires regardless of their length and the charge/discharge rate used. Thus, vertically aligned nanowire array electrodes show promise as current collectors for next-generation electrochemical energy-storage devices.

6.
Angew Chem Int Ed Engl ; 57(49): 16062-16066, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30325100

RESUMO

Oppositely charged nanoparticles precipitate rapidly only at the point of electroneutrality, wherein their charges are macroscopically compensated. We investigated the aggregation and precipitation of oppositely charged nanoparticles at concentrations ranging from 10 to 10-3  mm (based on gold atoms) by using UV/Vis measurements. We employed solutions of equally sized (4.6 nm) gold nanoparticles, which were functionalized and stabilized with either positively or with negatively charged alkanethiols. Results showed that oppositely charged nanoparticles do not precipitate if their concentration is below a certain threshold even if the electroneutrality condition is fulfilled. This finding suggests a universal behavior of chemical systems comprising oppositely charged building blocks such as ions and charged nanoparticles.

7.
Soft Matter ; 12(6): 1820-9, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26738621

RESUMO

Poly(ethyl acrylate)/poly(methyl methacrylate) (PEA/PMMA) polymer networks (IPNs) with spatially graded bicontinuous morphology were designed and controlled by taking advantage of the spinodal decomposition process induced by photopolymerization of the MMA monomer. Spatial gradients of the quench depth, induced by the gradients of light intensity, were generated along the path of the excitation light travelling through the mixture. Bicontinuous structures with uniaxial gradient of characteristic length scales were obtained by two different methods: simply irradiating the mixture with strong light intensity along the Z-direction and using the so-called computer-assisted irradiation (CAI) method with moderate intensity to generate the light intensity gradient exclusively in the XY plane. These experimental results suggest that the combination of these two irradiation methods could provide polymer materials with biaxially co-continuous gradient morphology. An analysis method using the concept of spatial correlation function was developed to analyze the time-evolution of these graded structures. The experimental results obtained in this study suggest a promising method to design gradient polymers in the bulk state (3D) as well as on the surface (2D) by taking advantage of photopolymerization.

8.
Phys Chem Chem Phys ; 18(36): 25735-25740, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711685

RESUMO

The self-assembly of nanoscopic building blocks into higher order macroscopic patterns is one possible approach for the bottom-up fabrication of complex functional systems. Macroscopic pattern formation, in general, is determined by the reaction and diffusion of ions and molecules. In some cases macroscopic patterns emerge from diffusion and interactions existing between nanoscopic or microscopic building blocks. In systems where the distribution of the interaction-determining species is influenced by the presence of a diffusion barrier, the evolving macroscopic patterns will be determined by the spatiotemporal evolution of the building blocks. Here we show that a macroscopic pattern can be generated by the spatiotemporally controlled aggregation of like-charged carboxyl-terminated gold nanoparticles in a hydrogel, where clustering is induced by the screening effect of the sodium ions that diffuse in a hydrogel. Diffusion fronts of the sodium ions and the induced nanoparticle aggregation generate Voronoi diagrams, where the Voronoi cells consist of aggregated nanoparticles and their edges are aggregation-free and nanoparticle-free zones. We also developed a simple aggregation-diffusion model to adequately describe the evolution of the experimentally observed Voronoi patterns.

9.
Langmuir ; 31(44): 12019-24, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26479840

RESUMO

In this work we present that aggregation of charged and pH sensitive nanoparticles can be spatiotemporally controlled by an autonomous way using the chlorite-tetrathionate autocatalytic front, where the front regulates the electrostatic interaction between nanoparticles due to protonation of the capping (carboxylate-terminated) ligand. We found that the aggregation and sedimentation of nanoparticles in liquid phase with the effect of reversible binding of the autocatalyst (H(+)) play important roles in changing the front stability (mixing length) and the velocity of the front in both cases when the fronts propagate upward and downward. Calculation of interparticle interactions (electrostatic and van der Waals) with the measurement of front velocity revealed that the aggregation process occurs fast (within a few seconds) at the front position.

10.
Nature ; 460(7253): 371-5, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19606145

RESUMO

In traditional photoconductors, the impinging light generates mobile charge carriers in the valence and/or conduction bands, causing the material's conductivity to increase. Such positive photoconductance is observed in both bulk and nanostructured photoconductors. Here we describe a class of nanoparticle-based materials whose conductivity can either increase or decrease on irradiation with visible light of wavelengths close to the particles' surface plasmon resonance. The remarkable feature of these plasmonic materials is that the sign of the conductivity change and the nature of the electron transport between the nanoparticles depend on the molecules comprising the self-assembled monolayers (SAMs) stabilizing the nanoparticles. For SAMs made of electrically neutral (polar and non-polar) molecules, conductivity increases on irradiation. If, however, the SAMs contain electrically charged (either negatively or positively) groups, conductivity decreases. The optical and electrical characteristics of these previously undescribed inverse photoconductors can be engineered flexibly by adjusting the material properties of the nanoparticles and of the coating SAMs. In particular, in films comprising mixtures of different nanoparticles or nanoparticles coated with mixed SAMs, the overall photoconductance is a weighted average of the changes induced by the individual components. These and other observations can be rationalized in terms of light-induced creation of mobile charge carriers whose transport through the charged SAMs is inhibited by carrier trapping in transient polaron-like states. The nanoparticle-based photoconductors we describe could have uses in chemical sensors and/or in conjunction with flexible substrates.


Assuntos
Luz , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Fotoquímica/instrumentação , Condutividade Elétrica , Ouro/química , Modelos Químicos , Prata/química , Ressonância de Plasmônio de Superfície , Temperatura
11.
Sci Rep ; 14(1): 9988, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693346

RESUMO

mRNA medicines can be used to express therapeutic proteins, but the production of such proteins in non-target cells has a risk of adverse effects. To accurately distinguish between therapeutic target and nontarget cells, it is desirable to utilize multiple proteins expressed in each cell as indicators. To achieve such multi-input translational regulation of mRNA medicines, in this study, we engineered Rhodothermus marinus (Rma) DnaB intein to develop "caged Rma DnaB intein" that enables conditional reconstitution of full-length translational regulator protein from split fragments. By combining the caged Rma DnaB intein, the split translational regulator protein, and target protein-binding domains, we succeeded in target protein-dependent translational repression of mRNA in human cells. In addition, the caged Rma intein showed orthogonality to the previously reported Nostoc punctiforme (Npu) DnaE-based caged intein. Finally, by combining these two orthogonal caged inteins, we developed an mRNA-based logic gate that regulates translation based on the expression of multiple intracellular proteins. This study provides important information to develop safer mRNA medicines.


Assuntos
Inteínas , Biossíntese de Proteínas , RNA Mensageiro , Inteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , DNA Polimerase III/metabolismo , DNA Polimerase III/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
12.
Front Robot AI ; 11: 1303440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646473

RESUMO

Conventional techniques for sharing paper documents in teleconferencing tend to introduce two inconsistencies: 1) media inconsistency: a paper document is converted into a digital image on the remote site; 2) space inconsistency: a workspace deliberately inverts the partner's handwriting to make a document easy to read. In this paper, we present a novel system that eliminates these inconsistencies. The media and space inconsistencies are resolved by reproducing a real paper document on a remote site and allowing a user to handover the paper document to a remote partner across a videoconferencing display. From a series of experiments, we found that reproducing a real paper document contributes to a higher sense of information sharing. We also found that handing over a document enhances a sense of space sharing, regardless of whether the document is digital or paper-based. These findings provide insights into designing systems for sharing paper documents across distances.

13.
Front Robot AI ; 11: 1240408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590970

RESUMO

In recent years, virtual idols have garnered considerable attention because they can perform activities similar to real idols. However, as they are fictitious idols with nonphysical presence, they cannot perform physical interactions such as handshake. Combining a robotic hand with a display showing virtual idols is the one of the methods to solve this problem. Nonetheless a physical handshake is possible, the form of handshake that can effectively induce the desirable behavior is unclear. In this study, we adopted a robotic hand as an interface and aimed to imitate the behavior of real idols. To test the effects of this behavior, we conducted step-wise experiments. The series of experiments revealed that the handshake by the robotic hand increased the feeling of intimacy toward the virtual idol, and it became more enjoyable to respond to a request from the virtual idol. In addition, viewing the virtual idols during the handshake increased the feeling of intimacy with the virtual idol. Moreover, the method of the hand-shake peculiar to idols, which tried to keep holding the user's hand after the conversation, increased the feeling of intimacy to the virtual idol.

14.
Nat Mater ; 11(11): 978-85, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961202

RESUMO

Although multiple methods have been developed to detect metal cations, only a few offer sensitivities below 1 pM, and many require complicated procedures and sophisticated equipment. Here, we describe a class of simple solid-state sensors for the ultrasensitive detection of heavy-metal cations (notably, an unprecedented attomolar limit for the detection of CH(3)Hg(+) in both standardized solutions and environmental samples) through changes in the tunnelling current across films of nanoparticles (NPs) protected with striped monolayers of organic ligands. The sensors are also highly selective because of the ligand-shell organization of the NPs. On binding of metal cations, the electronic structure of the molecular bridges between proximal NPs changes, the tunnelling current increases and highly conductive paths ultimately percolate the entire film. The nanoscale heterogeneity of the structure of the film broadens the range of the cation-binding constants, which leads to wide sensitivity ranges (remarkably, over 18 orders of magnitude in CH(3)Hg(+) concentration).


Assuntos
Eletroquímica/métodos , Poluentes Ambientais/análise , Poluentes Ambientais/química , Ouro/química , Nanopartículas Metálicas/química , Metais Pesados/análise , Metais Pesados/química , Etilenoglicol/química , Modelos Moleculares , Conformação Molecular , Compostos de Sulfidrila/química
15.
Pharmaceutics ; 15(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36678842

RESUMO

For the selective elimination of deleterious cells (e.g., cancer cells and virus-infected cells), the use of a cytotoxic gene is a promising approach. DNA-based systems have achieved selective cell elimination but risk insertional mutagenesis. Here, we developed a synthetic mRNA-based system to selectively eliminate cells expressing a specific target protein. The synthetic mRNAs used in the system are designed to express an engineered protein pair that are based on a cytotoxic protein, Barnase. Each engineered protein is composed of an N- or C-terminal fragment of Barnase, a target protein binding domain, and an intein that aids in reconstituting full-length Barnase from the two fragments. When the mRNAs are transfected to cells expressing the target protein, both N- and C-terminal Barnase fragments bind to the target protein, causing the intein to excise itself and reconstitute cytotoxic full-length Barnase. In contrast, when the target protein is not present, the reconstitution of full-length Barnase is not induced. Four candidate constructs containing split Barnase were evaluated for the ability to selectively eliminate target protein-expressing cells. One of the candidate sets demonstrated highly selective cell death. This system will be a useful therapeutic tool to selectively eliminate deleterious cells.

16.
ACS Appl Mater Interfaces ; 15(13): 17152-17162, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811865

RESUMO

All-inorganic cesium lead halide perovskite quantum dots (QDs) have several potential applications, owing to their unique optical and electronic properties. However, patterning perovskite QDs using conventional methods is difficult because of the ionic nature of QDs. Here, we demonstrate a unique approach, in which perovskite QDs are patterned in polymer films through the photocuring of monomers under patterned light illumination. The pattern illumination creates the transient polymer concentration difference, which drives the QDs to form patterns; hence controlling polymerization kinetics is essential for the generation of the QD pattern. For the patterning mechanism, a light projection system equipped with a digital micromirror device (DMD) is developed; thus, light intensity, an important factor to determine polymerization kinetics, is precisely controlled per position on the photocurable solution, resulting in the understanding of the mechanism and the formation of distinct QD patterns. The demonstrated approach assisted by the DMD-equipped projection system can form desired perovskite QD patterns solely by patterned light illumination, paving the way for the development of patterning methods for perovskite QDs and other nanocrystals.

17.
J Phys Chem Lett ; 14(40): 9003-9010, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37782010

RESUMO

Precipitation of oppositely charged entities is a common phenomenon in nature and laboratories. Precipitation and crystallization of oppositely charged ions are well-studied and understood processes in chemistry. However, much less is known about the precipitation properties of oppositely charged nanoparticles. Recently, it was demonstrated that oppositely charged gold nanoparticles (AuNPs), also called nanoions, decorated with positively or negatively charged thiol groups precipitate only at the point of electroneutrality of the sample (i.e., the charges on the particles are balanced). Here we demonstrate that the precipitation of oppositely AuNPs can occur not only at the point of electroneutrality. The width of the precipitation window depends on the size and concentration of the nanoparticles. This behavior can be explained by the aggregation of partially stabilized clusters reaching the critical size for their sedimentation in the gravitational field.

18.
Inflamm Regen ; 43(1): 32, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340499

RESUMO

BACKGROUND: Bone defects remain a challenge today. In addition to osteogenic activation, the crucial role of angiogenesis has also gained attention. In particular, vascular endothelial growth factor (VEGF) is likely to play a significant role in bone regeneration, not only to restore blood supply but also to be directly involved in the osteogenic differentiation of mesenchymal stem cells. In this study, to produce additive angiogenic-osteogenic effects in the process of bone regeneration, VEGF and Runt-related transcription factor 2 (Runx2), an essential transcription factor for osteogenic differentiation, were coadministered with messenger RNAs (mRNAs) to bone defects in the rat mandible. METHODS: The mRNAs encoding VEGF or Runx2 were prepared via in vitro transcription (IVT). Osteogenic differentiation after mRNA transfection was evaluated using primary osteoblast-like cells, followed by an evaluation of the gene expression levels of osteogenic markers. The mRNAs were then administered to a bone defect prepared in the rat mandible using our original cationic polymer-based carrier, the polyplex nanomicelle. The bone regeneration was evaluated by micro-computerized tomography (µCT) imaging, and histologic analyses. RESULTS: Osteogenic markers such as osteocalcin (Ocn) and osteopontin (Opn) were significantly upregulated after mRNA transfection. VEGF mRNA was revealed to have a distinct osteoblastic function similar to that of Runx2 mRNA, and the combined use of the two mRNAs resulted in further upregulation of the markers. After in vivo administration into the bone defect, the two mRNAs induced significant enhancement of bone regeneration with increased bone mineralization. Histological analyses using antibodies against the Cluster of Differentiation 31 protein (CD31), alkaline phosphatase (ALP), or OCN revealed that the mRNAs induced the upregulation of osteogenic markers in the defect, together with increased vessel formation, leading to rapid bone formation. CONCLUSIONS: These results demonstrate the feasibility of using mRNA medicines to introduce various therapeutic factors, including transcription factors, into target sites. This study provides valuable information for the development of mRNA therapeutics for tissue engineering.

19.
Pharmaceutics ; 15(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765260

RESUMO

The growing significance of messenger RNA (mRNA) therapeutics in diverse medical applications, such as cancer, infectious diseases, and genetic disorders, highlighted the need for efficient and safe delivery systems. Lipid nanoparticles (LNPs) have shown great promise for mRNA delivery, but challenges such as toxicity and immunogenicity still remain to be addressed. In this study, we aimed to compare the performance of polyplex nanomicelles, our original cationic polymer-based carrier, and LNPs in various aspects, including delivery efficiency, organ toxicity, muscle damage, immune reaction, and pain. Our results showed that nanomicelles (PEG-PAsp(DET)) and LNPs (SM-102) exhibited distinct characteristics, with the former demonstrating relatively sustained protein production and reduced inflammation, making them suitable for therapeutic purposes. On the other hand, LNPs displayed desirable properties for vaccines, such as rapid mRNA expression and potent immune response. Taken together, these results suggest the different potentials of nanomicelles and LNPs, supporting further optimization of mRNA delivery systems tailored for specific purposes.

20.
ACS Appl Bio Mater ; 6(1): 64-73, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36239448

RESUMO

Functionalized nanoparticles (NPs) are widely used in targeted drug delivery and biomedical imaging due to their penetration into living cells. The outer coating of most cells is a sugar-rich layer of the cellular glycocalyx, presumably playing an important part in any uptake processes. However, the exact role of the cellular glycocalyx in NP uptake is still uncovered. Here, we in situ monitored the cellular uptake of gold NPs─functionalized with positively charged alkaline thiol (TMA)─into adhered cancer cells with or without preliminary glycocalyx digestion. Proteoglycan (PG) components of the glycocalyx were treated by the chondroitinase ABC enzyme. It acts on chondroitin 4-sulfate, chondroitin 6-sulfate, and dermatan sulfate and slowly on hyaluronate. The uptake measurements of HeLa cells were performed by applying a high-throughput label-free optical biosensor based on resonant waveguide gratings. The positively charged gold NPs were used with different sizes [d = 2.6, 4.2, and 7.0 nm, small (S), medium (M), and large(L), respectively]. Negatively charged citrate-capped tannic acid (CTA, d = 5.5 nm) NPs were also used in control experiments. Real-time biosensor data confirmed the cellular uptake of the functionalized NPs, which was visually proved by transmission electron microscopy. It was found that the enzymatic digestion facilitated the entry of the positively charged S- and M-sized NPs, being more pronounced for the M-sized. Other enzymes digesting different components of the glycocalyx were also employed, and the results were compared. Glycosaminoglycan digesting heparinase III treatment also increased, while glycoprotein and glycolipid modifying neuraminidase decreased the NP uptake by HeLa cells. This suggests that the sialic acid residues increase, while heparan sulfate decreases the uptake of positively charged NPs. Our results raise the hypothesis that cellular uptake of 2-4 nm positively charged NPs is facilitated by glycoprotein and glycolipid components of the glycocalyx but inhibited by PGs.


Assuntos
Glicocálix , Nanopartículas Metálicas , Humanos , Ouro/química , Células HeLa , Nanopartículas Metálicas/química , Glicosaminoglicanos , Sulfatos de Condroitina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa