Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Pain ; 20: 17448069241233744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323375

RESUMO

Methylglyoxal (MGO), a highly reactive dicarbonyl metabolite of glucose primarily formed during the glycolytic pathway, is a precursor of advanced glycation end-products (AGEs). Recently, numerous studies have shown that MGO accumulation can cause pain and hyperalgesia. However, the mechanism through which MGO induces pain in the spinal dorsal horn remains unclear. The present study investigated the effect of MGO on spontaneous excitatory postsynaptic currents (sEPSC) in rat spinal dorsal horn neurons using blind whole-cell patch-clamp recording. Perfusion of MGO increased the frequency and amplitude of sEPSC in spinal horn neurons in a concentration-dependent manner. Additionally, MGO administration increased the number of miniature EPSC (mEPSC) in the presence of tetrodotoxin, a sodium channel blocker. However, 6-cyano-7-nitroqiunocaline-2,3-dione (CNQX), an AMPA/kainate receptor antagonist, blocked the enhancement of sEPSC by MGO. HC-030031, a TRP ankyrin-1 (TRPA1) antagonist, and capsazepine, a TRP vanilloid-1 (TRPV1) antagonist, inhibited the action of MGO. Notably, the effects of MGO were completely inhibited by HC-030031 and capsazepine. MGO generates reactive oxygen species (ROS) via AGEs. ROS also potentially induce pain via TRPA1 and TRPV1 in the spinal dorsal horn. Furthermore, we examined the effect of MGO in the presence of N-tert-butyl-α-phenylnitrone (PBN), a non-selective ROS scavenger, and found that the effect of MGO was completely inhibited. These results suggest that MGO increases spontaneous glutamate release from the presynaptic terminal to spinal dorsal horn neurons through TRPA1, TRPV1, and ROS and could enhance excitatory synaptic transmission.


Assuntos
Acetanilidas , Capsaicina/análogos & derivados , Óxido de Magnésio , Purinas , Aldeído Pirúvico , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Ratos Sprague-Dawley , Óxido de Magnésio/metabolismo , Óxido de Magnésio/farmacologia , Corno Dorsal da Medula Espinal/metabolismo , Células do Corno Posterior/metabolismo , Dor/metabolismo , Transmissão Sináptica/fisiologia
2.
Mol Pain ; 15: 1744806918824243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799694

RESUMO

To reveal cellular mechanisms for antinociception produced by clinically used tramadol, we investigated the effect of its metabolite O-desmethyltramadol (M1) on glutamatergic excitatory transmission in spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons. The whole-cell patch-clamp technique was applied at a holding potential of -70 mV to SG neurons of an adult rat spinal cord slice with an attached dorsal root. Under the condition where a postsynaptic action of M1 was inhibited, M1 superfused for 2 min reduced the frequency of spontaneous excitatory postsynaptic current in a manner sensitive to a µ-opioid receptor antagonist CTAP; its amplitude and also a response of SG neurons to bath-applied AMPA were hardly affected. The presynaptic effect of M1 was different from that of noradrenaline or serotonin which was examined in the same neuron. M1 also reduced by almost the same extent the peak amplitudes of monosynaptic primary-afferent Aδ-fiber and C-fiber excitatory postsynaptic currents evoked by stimulating the dorsal root. These actions of M1 persisted for >10 min after its washout. These results indicate that M1 inhibits the quantal release of L-glutamate from nerve terminals by activating µ-opioid but not noradrenaline and serotonin receptors; this inhibition is comparable in extent between monosynaptic primary-afferent Aδ-fiber and C-fiber transmissions. Considering that the SG plays a pivotal role in regulating nociceptive transmission, the present findings could contribute to at least a part of the inhibitory action of tramadol on nociceptive transmission together with its hyperpolarizing effect as reported previously.


Assuntos
Analgésicos Opioides/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Substância Gelatinosa/citologia , Tramadol/análogos & derivados , Animais , Interações Medicamentosas , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Masculino , Antagonistas de Entorpecentes/farmacologia , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Neurônios/fisiologia , Norepinefrina/farmacologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Ratos , Serotonina/farmacologia , Tramadol/farmacologia
3.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27094552

RESUMO

BACKGROUND: Glia-neuron interactions play an important role in the development of neuropathic pain. Expression of the pro-inflammatory cytokne →cytokine Interferon-gamma (IFNγ) is upregulated in the dorsal horn after peripheral nerve injury, and intrathecal IFNγ administration induces mechanical allodynia in rats. A growing body of evidence suggests that IFNγ might be involved in the mechanisms of neuropathic pain, but its effects on the spinal dorsal horn are unclear. We performed blind whole-cell patch-clamp recording to investigate the effect of IFNγ on postsynaptic glutamate-induced currents in the substantia gelatinosa neurons of spinal cord slices from adult male rats. RESULTS: IFNγ perfusion significantly enhanced the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons, but did not affect AMPA-induced currents. The facilitation of NMDA-induced current by IFNγ was inhibited by bath application of an IFNγ receptor-selective antagonist. Adding the Janus activated kinase inhibitor tofacitinib to the pipette solution did not affect the IFNγ-induced facilitation of NMDA-induced currents. However, the facilitatory effect of IFNγ on NMDA-induced currents was inhibited by perfusion of the microglial inhibitor minocycline. These results suggest that IFNγ binds the microglial IFNγ receptor and enhances NMDA receptor activity in substantia gelatinosa neurons. Next, to identify the effector of signal transmission from microglia to dorsal horn neurons, we added an inhibitor of G proteins, GDP-ß-S, to the pipette solution. In a GDP-ß-S-containing pipette solution, IFNγ-induced potentiation of the NMDA current was significantly suppressed after 30 min. In addition, IFNγ-induced potentiation of NMDA currents was blocked by application of a selective antagonist of CCR2, and its ligand CCL2 increased NMDA-induced currents. CONCLUSION: Our findings suggest that IFNγ enhance the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons via microglial IFNγ receptors and CCL2/CCR2 signaling. This mechanism might be partially responsible for the development of persistent neuropathic pain.


Assuntos
Comunicação Celular/efeitos dos fármacos , Interferon gama/farmacologia , Microglia/citologia , Microglia/metabolismo , Células do Corno Posterior/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Quimiocina CCL2/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Microglia/efeitos dos fármacos , Modelos Biológicos , N-Metilaspartato/farmacologia , Células do Corno Posterior/citologia , Células do Corno Posterior/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores CCR2/metabolismo , Receptores de Interferon/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Receptor de Interferon gama
4.
Mol Pain ; 11: 53, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26353783

RESUMO

BACKGROUND: LTB4 is classified as a leukotriene (LT), a group of lipid mediators that are derived from arachidonic acid. It is recognized that leukotrienes are involved in the pathogenesis of many diseases, including peripheral inflammatory pain. However, little is known about the effects of leukotrienes on the spinal dorsal horn during neuropathic pain. Previously, we reported that there was increased expression of 5-lipoxygenase (5-LO) at spinal microglia, and the leukotriene B4 receptor 1 (BLT1), a high affinity receptor of LTB4, in spinal neurons in spared nerve injury (SNI) model rats. In the present study, we examined the effects of LTB4 on spinal dorsal horn neurons in both naïve and SNI model rats using patch-clamp methods. RESULTS: Bath application of LTB4 did not change AMPA receptor-mediated spontaneous excitatory postsynaptic currents (sEPSCs) or membrane potentials. However, we found that LTB4 enhanced the amplitude of NMDA receptor-mediated sEPSCs and significantly increased exogenous NMDA-induced inward currents in SNI model rats. This increase of inward currents could be inhibited by a selective LTB4 antagonist, U75302, as well as a GDP-ß-S, a G-protein inhibitor. These results indicate that both increased LTB4 from spinal microglia or increased BLT1 in spinal neurons after peripheral nerve injury can enhance the activity of NMDA receptors through intracellular G-proteins in spinal dorsal horn neurons. CONCLUSION: Our findings showed that LTB4, which may originate from microglia, can activate BLT1 receptors which are expressed on the membrane of spinal dorsal horn neurons during neuropathic pain. This glia-neuron interaction induces the enhancement of NMDA currents through intracellular G-proteins. The enhancement of NMDA receptor sensitivity of dorsal horn neurons may lead to central sensitization, leading to mechanical pain hypersensitivity.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Leucotrieno B4/farmacologia , N-Metilaspartato/farmacologia , Traumatismos dos Nervos Periféricos/metabolismo , Células do Corno Posterior/metabolismo , Animais , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Masculino , Traumatismos dos Nervos Periféricos/fisiopatologia , Células do Corno Posterior/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
5.
Mol Pain ; 11: 20, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25896791

RESUMO

BACKGROUND: Transient receptor potential (TRP) channels are nonselective cation channels expressed in a variety of sensory structures, and are important molecular mediators of thermal, mechanical, cellular and chemical signals. We investigated the function of one key member of the TRP superfamily, TRPA1, in the spinal dorsal horn using in vivo patch-clamp recordings. RESULTS: The application of allyl isothiocyanate (AITC), a TRPA1 agonist, significantly increased the frequency and amplitude of inhibitory postsynaptic currents (IPSCs; holding potential (VH) = 0 mV) as well as excitatory postsynaptic currents (EPSCs; VH = -70 mV) in substantia gelatinosa (SG) neurons. The AITC-induced increases in EPSC frequency and amplitude were resistant to the Na(+) channel blocker tetrodotoxin (TTX). In the presence of the glutamate receptor antagonists CNQX and AP5, AITC did not generate any synaptic activity. The AITC-induced increases in IPSC frequency and amplitude were abolished by TTX or glutamate receptor antagonists. Moreover, the duration of IPSCs enhanced by TRPA1 activation were significantly longer than those of EPSCs enhanced by activation of this channel in the spinal dorsal horn. AITC induced hyperpolarization of the membrane potential of SG neurons in the spinal cord but depolarized the membrane potential in the presence of TTX. Furthermore, we examined the effects of mechanical stimuli to the skin during TRPA1 activation in the spinal dorsal horn in normal rats in both voltage-clamp and current-clamp modes. In the peripheral tissue stimuli test, AITC significantly suppressed EPSCs evoked by pinch or air puff stimulation of the skin. In current-clamp mode, AITC significantly suppressed excitatory postsynaptic potentials (EPSPs) evoked by pinch stimuli. CONCLUSIONS: TRPA1 appears to be localized not only at presynaptic terminals on SG neurons, enhancing glutamate release, but also in the terminals of primary afferents innervating spinal inhibitory interneurons, which have synaptic interactions with SG neurons. This study offers further insight into the mechanisms underlying the possible antinociceptive actions of TRPA1 activation in the spinal dorsal horn. Our findings suggest that pharmacological activation of spinal TRPA1 channels may have therapeutic potential for the treatment of pain.


Assuntos
Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Canais de Cátion TRPC/metabolismo , Analgésicos/farmacologia , Animais , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Substância Gelatinosa/citologia , Substância Gelatinosa/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Canal de Cátion TRPA1
6.
Eur J Neurosci ; 41(7): 989-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645012

RESUMO

Two-photon microscopy imaging has recently been applied to the brain to clarify functional and structural synaptic plasticity in adult neural circuits. Whereas the pain system in the spinal cord is phylogenetically primitive and easily exhibits behavioral changes such as hyperalgesia in response to inflammation, the structural dynamics of dendrites has not been analysed in the spinal cord mainly due to tissue movements associated with breathing and heart beats. Here we present experimental procedures to prepare the spinal cord sufficiently to follow morphological changes of neuronal processes in vivo by using two-photon microscopy and transgenic mice expressing fluorescent protein specific to the nervous system. Structural changes such as the formation of spine-like structures and swelling of dendrites were observed in the spinal dorsal horn within 30 min after the multiple-site injections of complete Freund's adjuvant (a chemical irritant) to a leg, and these changes continued for 5 h. Both AMPA and N-methyl-D-aspartate receptor antagonists, and gabapentin, a presynaptic Ca(2+) channel blocker, completely suppressed the inflammation-induced structural changes in the dendrites in the spinal dorsal horn. The present study first demonstrated by in vivo two-photon microscopy imaging that structural synaptic plasticity occurred in the spinal dorsal horn immediately after the injection of complete Freund's adjuvant and may be involved in inflammatory pain. Furthermore, acute inflammation-associated structural changes in the spinal dorsal horn were shown to be mediated by glutamate receptor activation.


Assuntos
Inflamação/patologia , Dor/patologia , Células do Corno Posterior/patologia , Doença Aguda , Aminas/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Ácidos Cicloexanocarboxílicos/farmacologia , Dendritos/patologia , Dendritos/fisiologia , Modelos Animais de Doenças , Adjuvante de Freund , Gabapentina , Imuno-Histoquímica , Inflamação/fisiopatologia , Masculino , Camundongos Transgênicos , Microscopia de Fluorescência , Dor/fisiopatologia , Técnicas de Patch-Clamp , Células do Corno Posterior/fisiologia , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo , Imagem com Lapso de Tempo , Ácido gama-Aminobutírico/farmacologia
7.
Biochem Biophys Rep ; 34: 101470, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37293534

RESUMO

Transient receptor potential families play important roles in the pathology of osteoarthritis (OA) of the knee. While transient receptor potential ankyrin 1 (TRPA1) is also an essential component of the pathogenesis of various arthritic conditions, its association with pain is controversial. Thus, we researched whether TRPA1 is involved in knee OA pain by in vivo patch-clamp recordings and evaluated the behavioral responses using CatWalk gait analysis and pressure application measurement (PAM). Injection of the Trpa1 agonist, allyl isothiocyanate (AITC), into the knee joint significantly increased spontaneous excitatory synaptic current (sEPSC) frequency in the substantia gelatinosa of rats with knee OA, while injection of the Trpa1 antagonist, HC-030031, significantly decreased the sEPSC. Meanwhile, AITC did not affect the sEPSC in sham rats. In the CatWalk and PAM behavioral tests, AITC significantly decreased pain thresholds, but no difference between HC-030031 and saline injections was observed. Our results indicate that Trpa1 mediates knee OA-induced pain. We demonstrated that Trpa1 is activated in the knee joints of rats with OA, and Trpa1 activity enhanced the pain caused by knee OA.

8.
Mol Pain ; 8: 31, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22537715

RESUMO

BACKGROUND: Lumbar radiculopathy is a common clinical problem, characterized by dorsal root ganglion (DRG) injury and neural hyperactivity causing intense pain. However, the mechanisms involved in DRG injury have not been fully elucidated. Furthermore, little is known about the degree of radiculopathy at the various levels of nerve injury. The purpose of this study is to compare the degree of radiculopathy injury at the DRG and radiculopathy injury proximal or distal to the DRG. RESULTS: The lumbar radiculopathy rat model was created by ligating the L5 nerve root 2 mm proximal to the DRG or 2 mm distal to the DRG with 6.0 silk. We examined the degree of the radiculopathy using different points of mechanical sensitivity, immunohistochemistry and in vivo patch-clamp recordings, 7 days after surgery. The rats injured distal to the DRG were more sensitive than those rats injured proximal to the DRG in the behavioral study. The number of activated microglia in laminas I-II of the L5 segmental level was significantly increased in rats injured distal to the DRG when compared with rats injured proximal to the DRG. The amplitudes and frequencies of EPSC in the rats injured distal to the DRG were higher than those injured proximal to the DRG. The results indicated that there is a different degree of radiculopathy at the distal level of nerve injury. CONCLUSIONS: Our study examined the degree of radiculopathy at different levels of nerve injury. Severe radiculopathy occurred in rats injured distal to the DRG when compared with rats injured proximal to the DRG. This finding helps to correctly diagnose a radiculopathy.


Assuntos
Gânglios Espinais/lesões , Radiculopatia/fisiopatologia , Animais , Modelos Animais de Doenças , Masculino , Limiar da Dor , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
9.
Mol Pain ; 8: 59, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22909213

RESUMO

BACKGROUND: Postherpetic neuralgia is spontaneous pain and allodynia that persist long after the disappearance of the cutaneous lesions caused by herpes zoster. Inoculation of mice with herpes simplex virus-1 causes herpes zoster-like skin lesions and herpetic and postherpetic pain. Although NMDA receptors have been suggested to be involved in postherpetic pain as in other types of neuropathic pain, the neural mechanism remains unclear. NMDA receptor NR2B subunit is the most tyrosine-phosphorylated protein in the brain, and Tyr1472 is the major phosphorylation site of this subunit. RESULTS: To elucidate the role of Tyr1472 phosphorylation of the NR2B subunit in herpetic and postherpetic allodynia, we inoculated herpes simplex virus-1 into the unilateral hind paw of knock-in mice with a mutation of Tyr1472 of the NR2B subunit to Phe (Y1472F-KI). On day 7 post-inoculation, acute herpetic allodynia was observed in more than 80% of the inoculated wild-type and Y1472F-KI mice. Y1472F-KI mice showed significantly reduced intensity and incidence of postherpetic allodynia on days 45-50 post-inoculation as compared with wild-type mice. The innervation in the skin at the postherpetic neuralgia phase was retained to a greater extent in the Y1472F-KI mice. The level of activating transcription factor-3 mRNA, a marker of axonal damage, increased much less in the dorsal root ganglia (DRGs) of Y1472F-KI mice than in those of wild-type mice; and the level of nerve growth factor mRNA significantly increased in wild-type mice, but not at all in Y1472F-KI mice on day 7 post-inoculation. Production of nerve growth factor was at the basal level in the skin of both groups of mice on day 50 post-inoculation. Nerve growth factor and glial cell-derived neurotrophic factor stimulated neurite outgrowth of cultured DRG neurons from Y1472F-KI mice, similarly or less so as they did the outgrowth of those from wild-type mice. Wild-type DRG neurons were more susceptible to glutamate neurotoxicity than Y1472F-KI ones. CONCLUSIONS: Taken together, the present data suggest that phosphorylation of the NR2B subunit at its Tyr1472 is involved in the development of postherpetic allodynia due to nerve damage and that the nerve damage at the acute herpetic phase is correlated with the incidence of postherpetic pain.


Assuntos
Neuralgia Pós-Herpética/metabolismo , Fosfotirosina/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Gânglios Espinais/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Introdução de Genes , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Herpes Simples/metabolismo , Herpes Simples/patologia , Herpesvirus Humano 1/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , N-Metilaspartato/farmacologia , Neuralgia Pós-Herpética/patologia , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurotoxinas/toxicidade , Fosforilação/efeitos dos fármacos , Pele/inervação , Pele/patologia , Relação Estrutura-Atividade , Substância P/metabolismo
10.
Biochem Biophys Rep ; 28: 101130, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34541342

RESUMO

Riluzole (2-amino-6-(trifluoromethoxy)benzothiazole) is a drug known for its inhibitory effect on glutamatergic transmission and its anti-nociceptive and anti-allodynic effects in neuropathic pain rat models. Riluzole also has an enhancing effect on GABAergic synaptic transmission. However, the effect on the spinal dorsal horn, which plays an important role in modulating nociceptive transmission, remains unknown. We investigated the ameliorating effect of riluzole on mechanical allodynia using the von Frey test in a rat model of neuropathic pain and analyzed the synaptic action of riluzole on inhibitory synaptic transmission in substantia gelatinosa (SG) neurons using whole-cell patch clamp recordings. We found that single-dose intraperitoneal riluzole (4 mg/kg) administration effectively attenuated mechanical allodynia in the short term in a rat model of neuropathic pain. Moreover, 300 µM riluzole induced an outward current in rat SG neurons. The outward current induced by riluzole was not suppressed in the presence of tetrodotoxin. Furthermore, we found that the outward current was suppressed by simultaneous bicuculline and strychnine application, but not by strychnine alone. Altogether, these results suggest that riluzole enhances inhibitory synaptic transmission monosynaptically by potentiating GABAergic synaptic transmission in the rat spinal dorsal horn.

11.
Biochem Biophys Res Commun ; 379(4): 980-4, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19135979

RESUMO

We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na(+)-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.


Assuntos
Anestésicos Locais/farmacologia , Canais de Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Lidocaína/farmacologia , Substância Gelatinosa/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Anquirinas , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Procaína/farmacologia , Ratos , Ratos Sprague-Dawley , Substância Gelatinosa/citologia , Substância Gelatinosa/fisiologia , Canal de Cátion TRPA1 , Canais de Cátion TRPC
12.
Neuroreport ; 30(1): 19-25, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30371538

RESUMO

BACKGROUND: Baclofen is a lipophilic γ-aminobutyric acid (GABA) derivative that exhibits strong intrinsic activity and a high affinity for GABAB receptors. Intrathecal baclofen therapy has been used as an antispasticity and muscle relaxant drug in the clinical treatment of patients with severe spasticity. However, the cellular mechanisms of the antispasticity effects of baclofen on the ventral horn neurons of the spinal cord are unknown. OBJECTIVE: We examined the action of baclofen on excitatory synaptic transmission in ventral horn neurons in the rat spinal cord by whole-cell patch-clamp recordings. RESULTS: Baclofen significantly reduced the frequency and amplitude of miniature excitatory postsynaptic currents. The reduction in miniature excitatory postsynaptic current frequency was particularly strong, indicating presynaptic inhibition by baclofen. Moreover, baclofen-induced outward currents in all neurons tested. The baclofen-induced outward currents persisted in the presence of tetrodotoxin and glutamate receptor antagonists and were diminished in the presence of the postsynaptic intracellular K channel blocker cesium sulfate and the G-protein inhibitor guanosine 5'-(ß-thio)diphosphate trilithium salt. These results indicate direct postsynaptic depression mediated by G-protein-activated K channels by GABAB receptors on ventral horn neurons. The baclofen-induced outward currents and the inhibitory effects on spontaneous excitatory postsynaptic currents were blocked by the selective GABAB receptor antagonist CGP35348. CONCLUSION: Baclofen may have both presynaptic and postsynaptic capacity to inhibit synaptic transmission in ventral horn neurons by GABAB receptors. These cellular mechanisms may induce the antispasticity effects of intrathecal baclofen therapy in the spinal cord.


Assuntos
Células do Corno Anterior/efeitos dos fármacos , Baclofeno/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Agonistas dos Receptores de GABA-B/farmacologia , Antagonistas de Receptores de GABA-B/farmacologia , Inibição Neural/efeitos dos fármacos , Animais , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
13.
J Neurosci ; 27(16): 4443-51, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17442829

RESUMO

TRPA1 is expressed in primary sensory neurons and hair cells, and it is proposed to be activated by cold stimuli, mechanical stimuli, or pungent ingredients. However, its role in regulating synaptic transmission has never been documented yet. In the present study, we examined whether activation of the TRPA1 channels affects synaptic transmission in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by using the whole-cell patch-clamp technique. A chief ingredient of mustard oil, allyl isothiocyanate (AITC), superfused for 2 min markedly increased the frequency and amplitude of spontaneous EPSCs (sEPSCs), which was accompanied by an inward current. Similar actions were produced by cinnamaldehyde and allicin. The AITC-induced increases in sEPSC frequency and amplitude were resistant to tetrodotoxin (TTX) and La3+, whereas being significantly reduced in extent in a Ca2+-free bath solution. In the presence of glutamate receptor antagonists CNQX and AP5, AITC did not generate any synaptic activities. The AITC-induced increases in sEPSC frequency and amplitude were reduced by ruthenium red, whereas being unaffected by capsazepine. AITC also increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents; this AITC action was abolished in the presence of TTX or glutamate receptor antagonists. These results indicate that TRPA1 appears to be localized not only at presynaptic terminals on SG neurons to enhance glutamate release, but also in terminals of primary afferents innervating onto spinal inhibitory interneurons, which make synapses with SG neurons. This central modulation of sensory signals may be associated with physiological and pathological pain sensations.


Assuntos
Canais de Cálcio/metabolismo , Substância Gelatinosa/fisiologia , Transmissão Sináptica/fisiologia , Animais , Anquirinas , Isotiocianatos/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Canais de Cátion TRPC
14.
J Physiol ; 586(10): 2511-22, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18356203

RESUMO

Recent studies have suggested that spinal G-protein-coupled, inwardly rectifying K(+) (GIRK) channels play an important role in thermal nociception and the analgesic actions of morphine and other agents. In this study, we show that spinal GIRK channels are activated by an endogenous neurotransmitter using whole-cell patch-clamp recordings from substantia gelatinosa (SG) neurones in adult rat spinal cord slices. Although repetitive stimuli applied to the dorsal root did not induce any slow responses, ones focally applied to the spinal dorsal horn produced slow inhibitory postsynaptic currents (IPSCs) at a holding potential of -50 mV in about 30% of the SG neurones recorded. The amplitude and duration of slow IPSCs increased with the number of stimuli and decreased with removal of Ca(2+) from the external Krebs solution. Slow IPSCs were associated with an increase in membrane conductance; their polarity was reversed at a potential close to the equilibrium potential for K(+), calculated from the Nernst equation. Slow IPSCs were blocked by addition of GDP-beta-S into the patch-pipette solution, reduced in amplitude in the presence of Ba(2+), and significantly suppressed in the presence of an antagonist of GIRK channels, tertiapin-Q. Somatostatin produced an outward current in a subpopulation of SG neurones and the slow IPSC was occluded during the somatostatin-induced outward current. Moreover, slow IPSCs were significantly inhibited by the somatostatin receptor antagonist cyclo-somatostatin. These results suggest that endogenously released somatostatin may induce slow IPSCs through the activation of GIRK channels in SG neurones; this slow synaptic transmission might play an important role in spinal antinociception.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Neurônios/metabolismo , Somatostatina/fisiologia , Medula Espinal/metabolismo , Substância Gelatinosa/metabolismo , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Somatostatina/metabolismo
15.
Life Sci ; 83(5-6): 198-207, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18593589

RESUMO

An opioid tramadol more effectively inhibits compound action potentials (CAPs) than its metabolite mono-O-demethyl-tramadol (M1). To address further this issue, we examined the effects of opioids (morphine, codeine, ethylmorphine and dihydrocodeine) and cocaine on CAPs by applying the air-gap method to the frog sciatic nerve. All of the opioids at concentrations less than 10 mM reduced the peak amplitude of the CAP in a reversible and dose-dependent manner. The sequence of the CAP peak amplitude reductions was ethylmorphine>codeine>dihydrocodeine> or = morphine; the effective concentration for half-maximal inhibition (IC(50)) of ethylmorphine was 4.6 mM. All of the CAP inhibitions by opioids were resistant to a non-specific opioid-receptor antagonist naloxone. The CAP peak amplitude reductions produced by morphine, codeine and ethylmorphine were related to their chemical structures in such that this extent enhanced with an increase in the number of -CH(2) in a benzene ring, as seen in the inhibitory actions of tramadol and M1. Cocaine reduced CAP peak amplitudes with an IC(50) value of 0.80 mM. It is concluded that opioids reduce CAP peak amplitudes in a manner being independent of opioid-receptor activation and with an efficacy being much less than that of cocaine. It is suggested that the substituted groups of -OH bound to the benzene ring of morphine, codeine and ethylmorphine as well as of tramadol and M1, the structures of which are quite different from those of the opioids, may play an important role in producing nerve conduction block.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Nervo Isquiático/efeitos dos fármacos , Analgésicos Opioides/química , Animais , Canais de Cálcio/efeitos dos fármacos , Cocaína/farmacologia , Codeína/análogos & derivados , Codeína/farmacologia , Etilmorfina/farmacologia , Feminino , Masculino , Morfina/farmacologia , Naloxona/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Ranidae , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/fisiologia , Nervo Isquiático/fisiologia , Relação Estrutura-Atividade , Tetrodotoxina/farmacologia
16.
Nat Commun ; 9(1): 1886, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29760484

RESUMO

Spinal sensory transmission is under descending biphasic modulation, and descending facilitation is believed to contribute to chronic pain. Descending modulation from the brainstem rostral ventromedial medulla (RVM) has been the most studied, whereas little is known about direct corticospinal modulation. Here, we found that stimulation in the anterior cingulate cortex (ACC) potentiated spinal excitatory synaptic transmission and this modulation is independent of the RVM. Peripheral nerve injury enhanced the spinal synaptic transmission and occluded the ACC-spinal cord facilitation. Inhibition of ACC reduced the enhanced spinal synaptic transmission caused by nerve injury. Finally, using optogenetics, we showed that selective activation of ACC-spinal cord projecting neurons caused behavioral pain sensitization, while inhibiting the projection induced analgesic effects. Our results provide strong evidence that ACC stimulation facilitates spinal sensory excitatory transmission by a RVM-independent manner, and that such top-down facilitation may contribute to the process of chronic neuropathic pain.


Assuntos
Giro do Cíngulo/fisiopatologia , Bulbo/fisiopatologia , Neuralgia/fisiopatologia , Medula Espinal/fisiopatologia , Nervo Sural/fisiopatologia , Animais , Dor Crônica , Estimulação Elétrica , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Masculino , Bulbo/diagnóstico por imagem , Bulbo/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Molecular , Vias Neurais , Neuralgia/diagnóstico por imagem , Neuralgia/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Optogenética , Medição da Dor , Traumatismos dos Nervos Periféricos , Ratos , Ratos Sprague-Dawley , Medula Espinal/diagnóstico por imagem , Medula Espinal/metabolismo , Nervo Sural/diagnóstico por imagem , Nervo Sural/metabolismo , Transmissão Sináptica
17.
Mol Pain ; 3: 26, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17894865

RESUMO

Somatosensory information can be modulated by nicotinic acetylcholine receptors (nAChRs) in the superficial dorsal horn of the spinal cord. Nonetheless, the functional significance of nAChRs in the deep dorsal horn of adult animals remains unclear. Using whole-cell patch-clamp recordings from lamina V neurons in the adult rat spinal cord, we investigated whether the activation of nAChRs could modulate the inhibitory synaptic transmission in the deep dorsal horn. In the presence of CNQX and APV to block excitatory glutamatergic synaptic transmission, bath applications of nicotine (100 microM) significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in almost all neurons tested. The effect of nicotine was mimicked by N-methyl-4-(3-pyridinyl)-3-butene-1-amine (RJR-2403, 100 microM), an alpha 4 beta 2-nAChR agonist, and was also mimicked by choline (10 mM), an alpha 7-nAChR agonist. The effect of nicotine was completely blocked by the nAChR antagonist mecamylamine (5 microM). In the presence of tetrodotoxin (0.5 microM), nicotine (100 microM) significantly increased the miniature IPSC frequency. On the other hand, RJR-2403 (100 microM) or choline (10 mM) did not affect miniature IPSCs. The application of nicotine (100 microM) also evoked a large inward current in all lamina V neurons tested when cells were held at -60 mV. Similarly, RJR-2403 (100 microM) induced inward currents in the majority of lamina V neurons examined. On the other hand, choline (10 mM) did not elicit any detectable whole-cell currents. These results suggest that several nAChR subtypes are expressed on the presynaptic terminals, preterminals, and neuronal cell bodies within lamina V and that these nAChRs are involved in the modulation of inhibitory synaptic activity in the deep dorsal horn of the spinal cord.


Assuntos
Neurônios/fisiologia , Células do Corno Posterior/fisiologia , Receptores Nicotínicos/fisiologia , Transmissão Sináptica/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Bicuculina/farmacologia , Nicotina/farmacologia , Ratos , Receptores Nicotínicos/efeitos dos fármacos , Estricnina/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
18.
J Neurosci ; 22(4): 1228-37, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11850450

RESUMO

Using a spinal cord slice preparation and patch-clamp recordings from spinal cord dorsal horn neurons, we examined excitatory and inhibitory circuits connecting to lamina V neurons after the activation of afferent central terminal vanilloid receptor-1 (VR1) receptors and P2X receptors. We found that single neurons in lamina V often received excitatory inputs from two chemically defined afferent pathways. One of these pathways was polysynaptic from capsaicin-sensitive afferent terminals. In this pathway the capsaicin-sensitive afferent input first activated interneurons in superficial laminas, and then the excitatory activity was transmitted onto lamina V neurons. The second excitatory input was monosynaptic from alpha(beta)m-ATP-sensitive/capsaicin-insensitive afferent terminals. Both capsaicin-sensitive and alpha(beta)m-ATP-sensitive/capsaicin-insensitive pathways also recruited polysynaptic inhibitory inputs to lamina V neurons. Furthermore, we demonstrated that simultaneous activation of both capsaicin-sensitive afferent pathways and alpha(beta)m-ATP-sensitive/capsaicin-insensitive pathways could generate a temporal summation of excitatory inputs onto single lamina V neurons. These convergent pathways may provide a mechanism of sensory integration for two chemically defined sensory inputs and may have implications in different sensory states.


Assuntos
Trifosfato de Adenosina/farmacologia , Células do Corno Posterior/metabolismo , Antagonistas do Receptor Purinérgico P2 , Receptores de Droga/metabolismo , Receptores Purinérgicos P2/metabolismo , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/análogos & derivados , Envelhecimento/metabolismo , Animais , Capsaicina/farmacologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Gânglios Espinais/fisiologia , Glicinérgicos/farmacologia , Técnicas In Vitro , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Técnicas de Patch-Clamp , Células do Corno Posterior/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Ratos , Receptores Purinérgicos P2X , Recrutamento Neurofisiológico/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Tetrodotoxina/farmacologia
19.
Mol Pain ; 1: 20, 2005 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-15987503

RESUMO

In mammals, somatosensory input activates feedback and feed-forward inhibitory circuits within the spinal cord dorsal horn to modulate sensory processing and thereby affecting sensory perception by the brain. Conventionally, feedback and feed-forward inhibitory activity evoked by somatosensory input to the dorsal horn is believed to be driven by glutamate, the principle excitatory neurotransmitter in primary afferent fibers. Substance P (SP), the prototypic neuropeptide released from primary afferent fibers to the dorsal horn, is regarded as a pain substance in the mammalian somatosensory system due to its action on nociceptive projection neurons. Here we report that endogenous SP drives a novel form of feed-forward inhibitory activity in the dorsal horn. The SP-driven feed-forward inhibitory activity is long-lasting and has a temporal phase distinct from glutamate-driven feed-forward inhibitory activity. Compromising SP-driven feed-forward inhibitory activity results in behavioral sensitization. Our findings reveal a fundamental role of SP in recruiting inhibitory activity for sensory processing, which may have important therapeutic implications in treating pathological pain conditions using SP receptors as targets.


Assuntos
Retroalimentação Fisiológica/fisiologia , Mamíferos/fisiologia , Inibição Neural/fisiologia , Medula Espinal/fisiologia , Substância P/metabolismo , Animais , Comportamento Animal , Glutamatos/metabolismo , Camundongos , Dor/fisiopatologia , Estimulação Física , Ratos , Receptores da Neurocinina-1/metabolismo
20.
Pain ; 101(1-2): 13-23, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12507696

RESUMO

The GABA/glycine-mediated inhibitory activity in the substantia gelatinosa (SG) of the spinal cord is critical in the control of nociceptive transmission. We examined whether and how SG inhibitory activity might be regulated by neuronal nicotinic receptors (nAChRs). Patch-clamp recordings were performed in SG neurons of spinal slice preparations from adult rats. We provided electrophysiological evidence that inhibitory presynaptic terminals in the SG expressed nAChRs and their activation resulted in large increases in the frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) in over 90% SG neurons tested. The enhancement of inhibitory activity was mediated by increases in the release of GABA/glycine, and direct Ca(2+) entry through SG presynaptic nAChRs appeared to be involved. Miniature IPSC frequency could be enhanced by the nAChR agonists nicotine or cytisine. Nicotine could still elicit large increases in mIPSC frequency in the presence of the alpha4beta2 nAChR antagonist dihydro-beta-erythroidine (5 microM) and the alpha7 nAChR-selective antagonist methyllycaconitine (40 nM). However, nicotine did not produce a significant enhancement of mIPSC frequency in the presence of the broad spectrum nAChR antagonist mecamylamine (5 microM). Nicotinic agonist-evoked whole-cell currents from SG neurons and the antagonist profiles also indicated the presence of a subtype of nAChRs, which were different from the major central nervous system nAChR subtypes, i.e. alpha4beta2* or alpha7 nAChRs. Together, our results suggest that a subtype of nAChR, possibly alpha3beta4* nAChR or a new nAChR type, is highly expressed at the inhibitory presynaptic terminals in SG of adult rats and play a role in the control of inhibitory activity in SG.


Assuntos
Inibição Neural/fisiologia , Nicotina/análogos & derivados , Receptores Nicotínicos/química , Receptores Nicotínicos/fisiologia , Substância Gelatinosa/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Fatores Etários , Alcaloides/farmacologia , Animais , Azocinas , Colina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glicina/fisiologia , Inibição Neural/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Nootrópicos/farmacologia , Técnicas de Patch-Clamp , Quinolizinas , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa