Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203414

RESUMO

The HSP70 and HSP90 family members belong to molecular chaperones that exhibit protective functions during the cellular response to stressful agents. We investigated whether the exposure of rats to chronic mild stress (CMS), a validated model of depression, affects the expression of HSP70 and HSP90 in the prefrontal cortex (PFC), hippocampus (HIP) and thalamus (Thal). Male Wistar rats were exposed to CMS for 3 or 8 weeks. The antidepressant imipramine (IMI, 10 mg/kg, i.p., daily) was introduced in the last five weeks of the long-term CMS procedure. Depressive-like behavior was verified by the sucrose consumption test. The expression of mRNA and protein was quantified by real-time PCR and Western blot, respectively. In the 8-week CMS model, stress alone elevated HSP72 and HSP90B mRNA expression in the HIP. HSP72 mRNA was increased in the PFC and HIP of rats not responding to IMI treatment vs. IMI responders. The CMS exposure increased HSP72 protein expression in the cytosolic fraction of the PFC and HIP, and this effect was diminished by IMI treatment. Our results suggest that elevated levels of HSP72 may serve as an important indicator of neuronal stress reactions accompanying depression pathology and could be a potential target for antidepressant strategy.


Assuntos
Imipramina , Chaperonas Moleculares , Masculino , Ratos , Animais , Imipramina/farmacologia , Ratos Wistar , Proteínas de Choque Térmico HSP70 , Hipocampo , Proteínas de Choque Térmico HSP90/genética , Córtex Pré-Frontal , RNA Mensageiro/genética , Antidepressivos/farmacologia
2.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062902

RESUMO

Currently utilized antidepressants have limited effectiveness and frequently incur undesired effects. Most antidepressants are thought to act via the inhibition of monoamine reuptake; however, direct binding to monoaminergic receptors has been proposed to contribute to both their clinical effectiveness and their side effects, or lack thereof. Among the target receptors of antidepressants, α1­adrenergic receptors (ARs) have been implicated in depression etiology, antidepressant action, and side effects. However, differences in the direct effects of antidepressants on signaling from the three subtypes of α1-ARs, namely, α1A-, α1B- and α1D­ARs, have been little explored. We utilized cell lines overexpressing α1A-, α1B- or α1D-ARs to investigate the effects of the antidepressants imipramine (IMI), desipramine (DMI), mianserin (MIA), reboxetine (REB), citalopram (CIT) and fluoxetine (FLU) on noradrenaline-induced second messenger generation by those receptors. We found similar orders of inhibition at α1A-AR (IMI < DMI < CIT < MIA < REB) and α1D­AR (IMI = DMI < CIT < MIA), while the α1B-AR subtype was the least engaged subtype and was inhibited with low potency by three drugs (MIA < IMI = DMI). In contrast to their direct antagonistic effects, prolonged incubation with IMI and DMI increased the maximal response of the α1B-AR subtype, and the CIT of both the α1A- and the α1B-ARs. Our data demonstrate a complex, subtype-specific modulation of α1-ARs by antidepressants of different groups.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Receptores Adrenérgicos alfa 1/genética , Animais , Antidepressivos/classificação , Citalopram/farmacologia , Depressão/etiologia , Depressão/genética , Depressão/patologia , Desipramina/farmacologia , Fluoxetina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imipramina/farmacologia , Mianserina/farmacologia , Camundongos , Células PC12 , Ratos , Reboxetina/farmacologia , Transdução de Sinais/efeitos dos fármacos
3.
Biochim Biophys Acta ; 1860(2): 424-33, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26620976

RESUMO

BACKGROUND: Antidepressants can modify neuronal functioning by affecting many levels of signal transduction pathways that are involved in neuroplasticity. We investigated whether the phosphorylation status of focal adhesion kinase (FAK/PTK2) and its homolog, PYK2/PTK2B, and their complex with the downstream effectors (Src kinase, p130Cas, and paxillin) are affected by administration of the antidepressant drug, imipramine. The treatment influence on the levels of ERK1/2 kinases and their phosphorylated forms (pERK1/2) or the Gαq, Gα11 and Gα12 proteins were also assessed. METHODS: Rats were injected with imipramine (10 mg/kg, twice daily) for 21 days. The levels of proteins investigated in their prefrontal cortices were measured by Western blotting. RESULTS: Imipramine induced contrasting changes in the phosphorylation of FAK and PYK2 at Tyr397 and Tyr402, respectively. The decreased FAK phosphorylation and increased PYK2 phosphorylation were reflected by changes in the levels of their complex with Src and p130Cas, which was observed predominantly after chronic imipramine treatment. Similarly only chronic imipramine decreased the Gαq expression while Gα11 and Gα12 proteins were untouched. Acute and chronic treatment with imipramine elevated ERK1 and ERK2 total protein levels, whereas only the pERK1 was significantly affected by the drug. CONCLUSION: The enhanced activation of PYK2 observed here could function as compensation for FAK inhibition. GENERAL SIGNIFICANCE: These data demonstrate that treatment with imipramine, which is a routine in counteracting depressive disorders, enhances the phosphorylation of PYK2, a non-receptor kinase instrumental in promoting synaptic plasticity. This effect documents as yet not considered target in the mechanism of imipramine action.


Assuntos
Quinase 2 de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Imipramina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , MAP Quinases Reguladas por Sinal Extracelular/análise , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/análise , Masculino , Paxilina/metabolismo , Fosforilação , Ratos , Ratos Wistar
4.
Stress ; 19(2): 206-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941077

RESUMO

In this study, we investigated whether basal immobility time of C57BL/6J mice, which are commonly used in transgenesis, interferes with detection of depressive-like behavior in the tail suspension test (TST) after chronic restraint stress (CRS). We included in the study mice of the C57BL/6N strain, not previously compared with C57BL/6J for behavior in the TST, and contrasted both strains with NMRI mice which exhibit low basal immobility. NMRI, C57BL/6J, and C57BL/6N male mice (n = 20 per strain) were tested under basal conditions and after CRS (2 h daily for 14 d). NMRI and C57BL/6J mice were differentiated in the TST by low and high basal immobility times, respectively, while the C57BL/6N and NMRI mice showed similar levels of basal immobility. CRS extended the immobility time of NMRI mice in the TST, whereas both C57BL/6J and C57BL/6N mice were unaffected regardless of their initial phenotype. We explored whether detailed analysis of activity microstructure revealed effects of CRS in the TST, which are not apparent in the overall comparison of total immobility time. Interestingly, unlike C57BL/6J and/6N strains which showed no sensitivity to CRS, stressed NRMI mice displayed distinct activity microstructure. In contrast to behavioral differences, all stressed mice showed significant retardation in body weight gain, decreased thymus weight and increased adrenal cortex size. However, after CRS, enlargement of the adrenal medulla was observed in both C57BL/6J and C57BL/6N mice, suggesting similar sympatho-medullary activation and stress coping mechanism in these substrains.


Assuntos
Comportamento Animal/fisiologia , Depressão/fisiopatologia , Interação Gene-Ambiente , Genótipo , Elevação dos Membros Posteriores , Resposta de Imobilidade Tônica/fisiologia , Estresse Psicológico/psicologia , Adaptação Psicológica , Animais , Depressão/genética , Depressão/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos
5.
Behav Pharmacol ; 27(4): 397-401, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588212

RESUMO

The α1-adrenergic receptors (α1-ARs), which belong to a G protein-coupled receptor family, consist of three highly homologous subtypes known as α1A-ARs, α1B-ARs, and α1D-ARs. Our previous findings suggested that α1A-ARs are an important target for imipramine and electroconvulsive therapy. The current study sought to evaluate whether S-(+)-niguldipine and B8805-033, two selective antagonists of α1A-ARs, can evoke antidepressant-like effects in the forced swim test in rats. Both compounds were administered at three time points (24, 5, and 1 h before testing), and the effects of three doses (2, 5, and 10 mg/kg) of each compound were investigated. S-(+)-Niguldipine produced no antidepressant-like effects other than a 14% reduction in immobility time at the highest dose. Although B8805-033 at a dose of 2 mg/kg did not influence the rats' behavior, higher B8805-033 doses (5 and 10 mg/kg) produced significant reductions in immobility time (approximately 42 and 44% vs. controls, respectively; P<0.01). However, this effect was abolished by the concomitant administration of WAY100135, a serotonin receptor antagonist, suggesting that the observed antidepressant-like effects of B8805-033 are unrelated to α1A-ARs. Nevertheless, given the current dearth of selective α1A-AR agonists, the question of whether this particular subtype could be involved in antidepressant therapy mechanisms remains unresolved.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antidepressivos/farmacologia , Di-Hidropiridinas/farmacologia , Dioxinas/farmacologia , Pirimidinonas/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/administração & dosagem , Animais , Antidepressivos/administração & dosagem , Di-Hidropiridinas/administração & dosagem , Dioxinas/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Piperazinas/farmacologia , Pirimidinonas/administração & dosagem , Ratos , Ratos Wistar , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Natação , Fatores de Tempo
6.
Data Brief ; 53: 110242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533120

RESUMO

Particulate matter (PM) present in the air pollution increases morbidity and mortality due to several reasons. The dataset presents a comparative analysis of nebulization process of Fe2O3 and SiO2 nanoparticles or crude PM (NIST1648a) and that with reduced content of organic matter (LAp120). Nebulization tests were carried out to determine concentrations of nanoparticle and PM suspensions, in order to create an atmosphere with a concentration of PM particles about 1000 µg/m3 of air in the exposure chambers. It is important to properly recreate environmental conditions during further research on animals. The absorbance spectrum of the suspensions of the tested materials was measured in the range of 300-700 nm. The changes in the absorbance of these suspensions depending on the concentration after their passage through the nebulizers were examined. Based on the absorbance, it was determined to what extent the suspensions are passed out and dispersed by the nebulizers. The operating mode of the nebulizers and the concentration of suspensions were determined in order to establish the optimal exposure conditions and the microclimate of the chambers for further studies with mice. The dataset can help in optimization of nebulization process for all researchers exploring the further issue of the influence of the air pollution on the broadly understood animal functions, behavioral parameters and biochemical aspects.

7.
Pharmacol Rep ; 75(6): 1474-1487, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37725330

RESUMO

BACKGROUND: Parkinson's disease (PD) is a motor disorder characterized by the degeneration of dopaminergic neurons, putatively due to the accumulation of α-synuclein (α-syn) in Lewy bodies (LBs) in Substantia Nigra. PD is also associated with the formation of LBs in brain areas responsible for emotional and cognitive regulation such as the amygdala and prefrontal cortex, and concurrent depression prevalence in PD patients. The exact link between dopaminergic cell loss, α-syn aggregation, depression, and stress, a major depression risk factor, is unclear. Therefore, we aimed to explore the interplay between sensitivity to chronic stress and α-syn aggregation. METHODS: Bilateral injections of α-syn preformed fibrils (PFFs) into the striatum of C57Bl/6 J mice were used to induce α-syn aggregation. Three months after injections, animals were exposed to chronic social defeat stress. RESULTS: α-syn aggregation did not affect stress susceptibility but independently caused increased locomotor activity in the open field test, reduced anxiety in the light-dark box test, and increased active time in the tail suspension test. Ex vivo analysis revealed modest dopaminergic neuron loss in the substantia nigra and reduced dopaminergic innervation in the dorsal striatum in PFFs injected groups. α-Syn aggregates were prominent in the amygdala, prefrontal cortex, and substantia nigra, with minimal α-syn aggregation in the raphe nuclei and locus coeruleus. CONCLUSIONS: Progressive bilateral α-syn aggregation might lead to compensatory activity increase and alterations in emotionally regulated behavior, without affecting stress susceptibility. Understanding how α-syn aggregation and degeneration in specific brain structures contribute to depression and anxiety in PD patients requires further investigation.


Assuntos
Doença de Parkinson , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Substância Negra/metabolismo
8.
Neurochem Int ; 155: 105302, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150790

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits caused by the loss of dopaminergic neurons in the substantia nigra (SN) and ventral tegmental area (VTA). However, clinical data revealed that not only the dopaminergic system is affected in PD. Postmortem studies showed degeneration of noradrenergic cells in the locus coeruleus (LC) to an even greater extent than that observed in the SN/VTA. Pharmacological models support the concept that modification of noradrenergic transmission can influence the PD-like phenotype induced by neurotoxins. Nevertheless, there are no existing data on animal models regarding the distant impact of noradrenergic degeneration on intact SN/VTA neurons. The aim of this study was to create a transgenic mouse model with endogenously evoked progressive degeneration restricted to noradrenergic neurons and investigate its long-term impact on the dopaminergic system. To this end, we selectively ablated the transcription initiation factor-IA (TIF-IA) in neurons expressing dopamine ß-hydroxylase (DBH) by the Cre-loxP system. This mutation mimics a condition of nucleolar stress affecting neuronal survival. TIF-IADbhCre mice were characterized by selective, progressive degeneration of noradrenergic neurons, followed by phenotypic alterations associated with sympathetic system impairment. Our studies did not show any loss of tyrosine hydroxylase (TH)-positive cells in the SN/VTA of mutant mice; however, we observed increased indices of oxidative stress, enhanced markers of glial cell activation, inflammatory processes and isolated degenerating cells positive for FluoroJade C. These results were supported by gene expression profiling of VTA and SN from TIF-IADbhCre mice, revealing that 34 out of 246 significantly regulated genes in the SN/VTA were related to PD. Overall, our results shed new light on the possible negative influence of noradrenergic degeneration on dopaminergic neurons, reinforcing the neuroprotective role of noradrenaline.


Assuntos
Mesencéfalo , Substância Negra , Animais , Neurônios Dopaminérgicos/metabolismo , Inflamação/metabolismo , Camundongos , Norepinefrina/metabolismo , Estresse Oxidativo , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo
9.
Biomolecules ; 12(8)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-36008994

RESUMO

Despite the variable chemical and physical characteristics of particulate air pollutants, inflammation and oxidative stress have been identified as common mechanisms for cell damage and negative health influences. These effects are produced by organic components, especially by endotoxins. This study analyzed the gene expression profile after exposure of RAW 264.7 cells to the standard particulate matter (PM) material, NIST1648a, and PM with a reduced organic matter content, LAp120, in comparison to the effects of lipopolysaccharide (LPS). The selected parameters of cell viability, cell cycle progression, and metabolic and inflammatory activity were also investigated. Both forms of PM negatively influenced the parameters of cell activity. These results were generally reflected in the gene expression profile. Only NIST1648a, excluding LAp120, contained endotoxins and showed small but statistically significant pro-inflammatory activity. However, the gene expression profiling revealed strong pro-inflammatory cell activation induced by NIST1648a that was close to the effects of LPS. Changes in gene expression triggered by LAp120 were relatively small. The observed differences in the effects of NIST1648a and LAp120 were related to the content of organic matter in which bacterial endotoxins play an important role. However, other organic compounds and their interactions with other PM components also appear to be of significant importance.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/toxicidade , Endotoxinas/análise , Endotoxinas/toxicidade , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Material Particulado/toxicidade , Transcriptoma
10.
Psychopharmacology (Berl) ; 239(12): 3847-3857, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36278982

RESUMO

RATIONALE: We have discovered that rats at the age of 18 months begin to twitch their heads spontaneously (spontaneous head twitching, SHT). To date, no one has described this phenomenon. OBJECTIVES: The purpose of this study was to characterize SHT pharmacologically and to assess some possible mechanisms underlying SHT. METHODS: Wistar male rats were used in the study. Animals at the age of 18 months were qualified as HSHT (SHT ≥ 7/10 min observations) or LSHT (SHT < 7/10 min observations). Quantitative real-time PCR with TaqMan low-density array (TLDA) approach was adopted to assess the mRNA expression of selected genes in rat's hippocampus. RESULTS: HSHT rats did not differ from LSHT rats in terms of survival time, general health and behavior, water intake, and spontaneous locomotor activity. 2,5-dimethoxy-4-iodoamphetamine (DOI) at a dose of 2.5 mg/kg increased the SHT in HSHT and LSHT rats, while ketanserin dose-dependently abolished the SHT in the HSHT rats. The SHT was reduced or abolished by olanzapine, clozapine, risperidone, and pimavanserin. All these drugs have strong 5-HT2A receptor-inhibiting properties. Haloperidol and amisulpride, as antipsychotic drugs with a mostly dopaminergic mechanism of action, did not influence SHT. Similarly, escitalopram did not affect SHT. An in-depth gene expression analysis did not reveal significant differences between the HSHT and the LSHT rats. CONCLUSIONS: SHT appears in some aging rats (about 50%) and is permanent over time and specific to individuals. The 5-HT2A receptor strongly controls SHT. HSHT animals can be a useful animal model for studying 5-HT2A receptor ligands.


Assuntos
Antipsicóticos , Clozapina , Ratos , Animais , Masculino , Ratos Wistar , Receptor 5-HT2A de Serotonina , Ketanserina/farmacologia , Antipsicóticos/farmacologia
11.
Front Cell Neurosci ; 15: 647643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248501

RESUMO

Air pollution is regarded as an important risk factor for many diseases that affect a large proportion of the human population. To date, accumulating reports have noted that particulate matter (PM) is closely associated with the course of cardiopulmonary disorders. As the incidence of Alzheimer's disease (AD), Parkinson's disease (PD), and autoimmune disorders have risen and as the world's population is aging, there is an increasing interest in environmental health hazards, mainly air pollution, which has been slightly overlooked as one of many plausible detrimental stimuli contributing to neurodegenerative disease onset and progression. Epidemiological studies have indicated a noticeable association between exposure to PM and neurotoxicity, which has been gradually confirmed by in vivo and in vitro studies. After entering the body directly through the olfactory epithelium or indirectly by passing through the respiratory system into the circulatory system, air pollutants are subsequently able to reach the brain. Among the potential mechanisms underlying particle-induced detrimental effects in the periphery and the central nervous system (CNS), increased oxidative stress, inflammation, mitochondrial dysfunction, microglial activation, disturbance of protein homeostasis, and ultimately, neuronal death are often postulated and concomitantly coincide with the main pathomechanisms of neurodegenerative processes. Other complementary mechanisms by which PM could mediate neurotoxicity and contribute to neurodegeneration remain unconfirmed. Furthermore, the question of how strong and proven air pollutants are as substantial adverse factors for neurodegenerative disease etiologies remains unsolved. This review highlights research advances regarding the issue of PM with an emphasis on neurodegeneration markers, symptoms, and mechanisms by which air pollutants could mediate damage in the CNS. Poor air quality and insufficient knowledge regarding its toxicity justify conducting scientific investigations to understand the biological impact of PM in the context of various types of neurodegeneration.

12.
Toxics ; 9(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34564356

RESUMO

Exposure to air pollution from various airborne particulate matter (PM) is regarded as a potential health risk. Airborne PM penetrates the lungs, where it is taken up by macrophages, what results in macrophage activation and can potentially lead to negative consequences for the organism. In the present study, we assessed the effects of direct exposure of RAW 264.7 macrophages to crude PM (NIST1648a) and to a reduced content of organic matter (LAp120) for up to 72 h on selected parameters of metabolic activity. These included cell viability and apoptosis, metabolic activity and cell number, ROS synthesis, nitric oxide (NO) release, and oxidative burst. The results indicated that both NIST1648a and LAp120 negatively influenced the parameters of cell viability and metabolic activity due to increased ROS synthesis. The negative effect of PM was concentration-dependent; i.e., it was the most pronounced for the highest concentration applied. The impact of PM also depended on the time of exposure, so at respective time points, PM induced different effects. There were also differences in the impact of NIST1648a and LAp120 on almost all parameters tested. The negative effect of LAp120 was more pronounced, what appeared to be associated with an increased content of metals.

13.
Pharmacol Rep ; 73(4): 1179-1187, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34117630

RESUMO

BACKGROUND: Evidence indicates that Gα12, Gα13, and its downstream effectors, RhoA and Rac1, regulate neuronal morphology affected by stress. This study was aimed at investigating whether repeated stress influences the expression of proteins related to the Gα12/13 intracellular signaling pathway in selected brain regions sensitive to the effects of stress. Furthermore, the therapeutic impact of ß(1)adrenergic receptors (ß1AR) blockade was assessed. METHODS: Restraint stress (RS) model in mice (2 h/14 days) was used to assess prolonged stress effects on the mRNA expression of Gα12, Gα13, RhoA, Rac1 in the prefrontal cortex (PFC), hippocampus (HIP) and amygdala (AMY). In a separate study, applying RS model in rats (3-4 h/1 day or 14 days), we evaluated stress effects on the expression of Gα12, Gα11, Gαq, RhoA, RhoB, RhoC, Rac1/2/3 in the HIP. Betaxolol (BET), a selective ß1AR antagonist, was introduced (5 mg/kg/p.o./8-14 days) in the rat RS model to assess the role of ß1AR in stress effects. RT-qPCR and Western Blot were used for mRNA and protein assessments, respectively. RESULTS: Chronic RS decreased mRNA expression of Gα12 and increased mRNA for Rac1 in the PFC of mice. In the mice AMY, decreased mRNA expression of Gα12, Gα13 and RhoA was observed. Fourteen days of RS exposure increased RhoA protein level in the rats' HIP in the manner dependent on ß1AR activity. CONCLUSIONS: Together, these results suggest that repeated RS affects the expression of genes and proteins known to be engaged in neural plasticity, providing potential targets for further studies aimed at unraveling the molecular mechanisms of stress-related neuropsychiatric diseases.


Assuntos
Encéfalo/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Restrição Física/fisiologia , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 1/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Psychopharmacology (Berl) ; 238(11): 3167-3181, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34333674

RESUMO

RATIONALE: Pterostilbene is the 3,5-dimethoxy derivative of resveratrol with numerous beneficial effects including neuroprotective properties. Experimental studies revealed its anticonvulsant action in the acute seizure tests. OBJECTIVES: The purpose of the present study was to evaluate the effect of pterostilbene in the pentetrazol (PTZ)-induced kindling model of epilepsy in mice as well as to assess some possible mechanisms of its anticonvulsant action in this model. METHODS: Mice were repeatedly treated with pterostilbene (50-200 mg/kg) and its effect on the development of seizure activity in the PTZ kindling was estimated. Influence of pterostilbene on the locomotor activity and anxiety- and depression-like behavior in the PTZ-kindled mice was also assessed. To understand the possible mechanisms of anticonvulsant activity of pterostilbene, γ-aminobutyric acid (GABA) and glutamate concentrations in the prefrontal cortex and hippocampus of the PTZ-kindled mice were measured using LC-MS/MS method. Moreover, mRNA expression of BDNF, TNF-α, IL-1ß, IL-6, GABRA1A, and GRIN2B was determined by RT-qPCR technique. RESULTS: We found that pterostilbene at a dose of 200 mg/kg considerably reduced seizure activity but did not influence the locomotor activity and depression- and anxiety-like behavior in the PTZ-kindled mice. In the prefrontal cortex and hippocampus, pterostilbene reversed the kindling-induced decrease of GABA concentration. Neither in the prefrontal cortex nor hippocampus pterostilbene affected mRNA expression of IL-1ß, IL-6, GABRA1A, and GRIN2B augmented by PTZ kindling. Pterostilbene at a dose of 100 mg/kg significantly decreased BDNF and TNF-α mRNA expression in the hippocampus of the PTZ-kindled mice. CONCLUSIONS: Although further studies are necessary to understand the mechanism of anticonvulsant properties of pterostilbene, our findings suggest that it might be considered a candidate for a new antiseizure drug.


Assuntos
Anticonvulsivantes , Excitação Neurológica , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Ansiedade/tratamento farmacológico , Cromatografia Líquida , Depressão/tratamento farmacológico , Camundongos , Pentilenotetrazol/farmacologia , Estilbenos , Espectrometria de Massas em Tandem
15.
Biomolecules ; 11(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669305

RESUMO

This study demonstrates how exposure to psychosocial crowding stress (CS) for 3, 7, and 14 days affects glutamate synapse functioning and signal transduction in the frontal cortex (FC) of rats. CS effects on synaptic activity were evaluated in FC slices of the primary motor cortex (M1) by measuring field potential (FP) amplitude, paired-pulse ratio (PPR), and long-term potentiation (LTP). Protein expression of GluA1, GluN2B mGluR1a/5, VGLUT1, and VGLUT2 was assessed in FC by western blot. The body's response to CS was evaluated by measuring body weight and the plasma level of plasma corticosterone (CORT), adrenocorticotropic hormone (ACTH), and interleukin 1 beta (IL1B). CS 3 14d increased FP and attenuated LTP in M1, while PPR was augmented in CS 14d. The expression of GluA1, GluN2B, and mGluR1a/5 was up-regulated in CS 3d and downregulated in CS 14d. VGLUTs expression tended to increase in CS 7d. The failure to blunt the effects of chronic CS on FP and LTP in M1 suggests the impairment of habituation mechanisms by psychosocial stressors. PPR augmented by chronic CS with increased VGLUTs level in the CS 7d indicates that prolonged CS exposure changed presynaptic signaling within the FC. The CS bidirectional profile of changes in glutamate receptors' expression seems to be a common mechanism evoked by stress in the FC.


Assuntos
Lobo Frontal/metabolismo , Receptores de Glutamato/biossíntese , Hormônio Adrenocorticotrópico/biossíntese , Animais , Peso Corporal , Corticosterona/biossíntese , Aglomeração , Eletrofisiologia , Ácido Glutâmico , Interleucina-1beta/biossíntese , Potenciação de Longa Duração , Masculino , Modelos Animais , Córtex Motor , Tamanho do Órgão , Ratos , Ratos Wistar , Receptores de AMPA/biossíntese , Receptores de Glutamato Metabotrópico/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Baço/patologia , Estresse Psicológico , Transmissão Sináptica/efeitos dos fármacos , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese
16.
Int J Neuropsychopharmacol ; 13(6): 737-46, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19698191

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a clinically effective antidepressant treatment, but meta-analysis suggests that its efficacy is marginal. We investigated whether the administration of rTMS together with paroxetine would enhance its effects on the beta-adrenergic system of the rat. We compared our results with the effects of electroconvulsive shock therapy (ECS). The experiment was performed for 12 d on male Wistar rats that received a physical treatment of either rTMS (B=1.4 T, f=10 Hz, 300 s) or ECS (I=130 mA, f=50 Hz, t=500 ms), preceded by sterile water or paroxetine (10 mg/kg i.p. 30 min earlier). All rats were decapitated 24 h after the final treatment. Cyclic AMP (cAMP) was measured in cortical slices prelabelled with [3H]adenine and stimulated with noradrenaline. beta-adrenoceptor parameters (Bmax and KD) were assessed in the P2 fraction of cortical homogenates using [3H]CGP 12177 as a ligand. ECS resulted in down-regulation of both the cAMP response and beta-adrenoceptor density, while rTMS depressed only the responsiveness of the cAMP-generating system. Paroxetine, which was only effective in dampening the cAMP response, did not change the effects of either physical treatment. The data suggest that any possible interaction between paroxetine and rTMS or ECS does not involve the beta-adrenergic mechanisms.


Assuntos
Córtex Cerebral/metabolismo , Eletrochoque/métodos , Paroxetina/farmacologia , Receptores Adrenérgicos beta/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estimulação Magnética Transcraniana/métodos , Animais , AMP Cíclico/metabolismo , Masculino , Condicionamento Físico Animal/métodos , Ligação Proteica/efeitos dos fármacos , Ratos
17.
J Neural Transm (Vienna) ; 117(5): 549-58, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20309590

RESUMO

We aimed to elucidate the role of alpha(1)-adrenoceptors in adenosine analgesia in the formalin test. Formalin was injected into the hind paw of male CD-1 mice after injection of adenosine A(1) or A(2a) receptor agonists, CPA, [N(6)-cyclopentyladenosine], and CGS21680 [2-p-(2-carboxyethyl)-phenylethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride]. In the behavioral experiment, alpha(1)-adrenoceptors were blocked by an alpha(1)-adrenoceptor antagonist prazosin, 0.01 mg/kg i.p., and the time mice spent paw licking was recorded for the early (0-15 min) and late (15-60 min) phase of formalin pain. In the neurochemical experiments, mice were killed 15 or 45 min after formalin injection. The density of alpha(1)-adrenoceptors was assessed in various brain areas and in the lumbar spinal cord by [(3)H]prazosin autoradiography. Adenosine agonists produced analgesia in both phases of formalin pain, while prazosin showed a tendency to pronociceptive action in the late phase, and antagonized the effect of CGS21680. After formalin injection, alpha(1)-adrenoceptor density was elevated in some brain areas, mainly in the late phase (some contralateral amygdaloid and ipsilateral thalamic nuclei) and depressed in others (early phase in the ipsilateral spinal cord and late phase in both ipsi- and contralateral sensorimotor cortex). Elevation of alpha(1)-adrenoceptor density, which may be interpreted as a defensive response, did not develop in several cases of CPA-pretreated mice. This suggests that the analgesic effect of adenosine A(1) receptor activation renders the defensive response unnecessary. The depression of alpha(1)-adrenoceptors may suggest development of hypersensitivity in a given structure, and this was antagonized by CGS21680, suggesting the role of A(2a) receptors in control of inflammatory formalin pain.


Assuntos
Analgésicos/farmacologia , Sistema Nervoso Central/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Adenosina/agonistas , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Animais , Autorradiografia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiopatologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Camundongos , Nociceptores/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/fisiopatologia , Medição da Dor , Fenetilaminas/farmacologia , Prazosina/farmacologia , Receptores Adrenérgicos alfa 1/efeitos dos fármacos
18.
Pharmacol Rep ; 71(5): 753-761, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31351316

RESUMO

BACKGROUND: The transcription factor CREB and the neurotrophin BDNF are important mood regulators due to their profound role in controlling the neuronal plasticity. Our previously published results from transgenic mice functionally lacking CREB in chosen neural populations have shown that BDNF upregulation evoked by chronic treatment with fluoxetine seems to be dependent on CREB residing exclusively in serotonergic neurons. To further elucidate this observation, we focused on the representative signaling cascades engaged in the regulation of BDNF production. METHODS: The study was carried out on mice lacking CREB in noradrenergic (Creb1DBHCre) or serotonergic (Creb1TPH2CreERT2) neurons in CREM deficient background. Animals received fluoxetine (10 mg/kg, ip) or desipramine (20 mg/kg, ip) for 21 days. The expression of following proteins and their phosphorylated forms was assessed by Western blot: CREB, BDNF, CaMKIIα, ERK1/2. RESULTS: We showed that consistent with previously observed BDNF upregulation, chronic treatment with fluoxetine causes an increase in the pool of active CaMKIIα in w/t males, while in Creb1TPH2CreERT2 mutants, this effect ceased along with the observed decrease in ERK1/2 phosphorylation. These effects were region- and sex-specific. We did not observe a similar pattern of changes regarding the levels of BDNF expression and the CaMKIIα, ERK1/2 kinases in Creb1DBHCre mice exposed to desipramine. However, sex-dependent changes in the regulation of CaMKIIα and ERK1/2 activity were also observed. CONCLUSIONS: Our study highlights the pivotal role of CREB in response to antidepressants, emphasizing different sex-dependent vulnerabilities to particular drugs and the important impact of CREM on the effects of CREB deletion.


Assuntos
Neurônios Adrenérgicos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neurônios Serotoninérgicos/metabolismo , Neurônios Adrenérgicos/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Desipramina/farmacologia , Feminino , Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Caracteres Sexuais
19.
Front Immunol ; 10: 2198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616413

RESUMO

Recently, the role of CXCR2 in nociception has been noted. Our studies provide new evidence that the intrathecal administration of its CINC ligands (Cytokine-Induced Neutrophil Chemoattractant; CXCL1-3) induces pain-like behavior in naïve mice, and the effect occurring shortly after administration is associated with the neural location of CXCR2, as confirmed by immunofluorescence. RT-qPCR analysis showed, for the first time, raised levels of spinal CXCR2 after chronic constriction injury (CCI) of the sciatic nerve in rats. Originally, on day 2, we detected escalated levels of the spinal mRNA of all CINCs associated with enhancement of the protein level of CXCL3 lasting until day 7. Intrathecal administration of CXCL3 neutralizing antibody diminished neuropathic pain on day 7 after CCI. Interestingly, CXCL3 is produced in lipopolysaccharide-stimulated microglial, but not astroglial, primary cell cultures. We present the first evidence that chronic intrathecal administrations of the selective CXCR2 antagonist, NVP CXCR2 20, attenuate neuropathic pain symptoms and CXCL3 expression after CCI. Moreover, in naïve mice, this antagonist prevented CXCL3-induced hypersensitivity. However, NVP CXCR2 20 did not diminish glial activation, thus not enhancing morphine/buprenorphine analgesia. These results provide novel insight into the crucial role of CXCR2 in neuropathy based on CXCL3 modulation, which may become a potential therapeutic target in pain treatment.


Assuntos
Quimiocinas CXC/metabolismo , Neuralgia/tratamento farmacológico , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Receptores de Interleucina-8B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Animais , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Wistar , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Medula Espinal/metabolismo
20.
Sci Rep ; 9(1): 5262, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918302

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by motor deficits such as tremor, rigidity and bradykinesia. These symptoms are directly caused by the loss of dopaminergic neurons. However, a wealth of clinical evidence indicates that the dopaminergic system is not the only system affected in PD. Postmortem studies of brains from PD patients have revealed the degeneration of noradrenergic neurons in the locus coeruleus (LC) to the same or even greater extent than that observed in the dopaminergic neurons of substantia nigra (SN) and ventral tegmental area (VTA). Moreover, studies performed on rodent models suggest that enhancement of noradrenergic transmission may attenuate the PD-like phenotype induced by MPTP administration, a neurotoxin-based PD model. The aim of this study was to investigate whether chronic treatment with either of two compounds targeting the noradrenergic system (reboxetine or atipamezole) possess the ability to reduce the progression of a PD-like phenotype in a novel mouse model of progressive dopaminergic neurodegeneration induced by the genetic inhibition of rRNA synthesis in dopaminergic neurons, mimicking a PD-like phenotype. The results showed that reboxetine improved the parkinsonian phenotype associated with delayed progression of SN/VTA dopaminergic neurodegeneration and higher dopamine content in the striatum. Moreover, the alpha1-adrenergic agonist phenylephrine enhanced survival of TH+ neurons in primary cell cultures, supporting the putative neuroprotective effects of noradrenergic stimulation. Our results provide new insights regarding the possible influence of the noradrenergic system on dopaminergic neuron survival and strongly support the hypothesis regarding the neuroprotective role of noradrenaline.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Reboxetina/uso terapêutico , Animais , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Feminino , Imidazóis/uso terapêutico , Imuno-Histoquímica , Locus Cerúleo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Área Tegmentar Ventral/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa