RESUMO
Despite having achieved drastically improved lasing characteristics by harnessing tensile strain, the current methods of introducing a sizable tensile strain into GeSn lasers require complex fabrication processes, thus reducing the viability of the lasers for practical applications. The geometric strain amplification is a simple technique that can concentrate residual and small tensile strain into localized and large tensile strain. However, the technique is not suitable for GeSn due to the intrinsic compressive strain introduced during the conventional epitaxial growth. In this Letter, we demonstrate the geometrical strain amplification in GeSn by employing a tensile strained GeSn-on-insulator (GeSnOI) substrate. This work offers exciting opportunities in developing practical wavelength-tunable lasers for realizing fully integrated photonic circuits.
RESUMO
Quantum photonic circuits have recently attracted much attention owing to the potential to achieve exceptional performance improvements over conventional classical electronic circuits. Second-order χ(2) nonlinear processes play an important role in the realization of several key quantum photonic components. However, owing to their centrosymmetric nature, CMOS-compatible materials including silicon (Si) and germanium (Ge) traditionally do not possess the χ(2) response. Recently, second-harmonic generation (SHG) that requires the χ(2) response was reported in Ge, but no attempts at enhancing the SHG signal have been conducted and proven experimentally. Herein, we demonstrate the effect of strain on SHG from Ge by depositing a silicon nitride (Si3N4) stressor layer on Ge-on-insulator (GOI) microdisks. This approach allows the deformation of the centrosymmetric unit cell structure of Ge, which can further enhance the χ(2) nonlinear susceptibility for SHG emission. The experimental observation of SHG under femtosecond optical pumping indicates a clear trend of enhancement in SHG signals with increasing strain. Such improvements boost conversion efficiencies by 300% when compared to the control counterpart. This technique paves the way toward realizing a CMOS-compatible material with nonlinear characteristics, presenting unforeseen opportunities for its integration in the semiconductor industry.
RESUMO
Two-dimensional (2D) materials-based photodetectors in the infrared range hold the key to enabling a wide range of optoelectronics applications including infrared imaging and optical communications. While there exist 2D materials with a narrow bandgap sensitive to infrared photons, a two-photon absorption (TPA) process can also enable infrared photodetection in well-established 2D materials with large bandgaps such as WSe2 and MoS2. However, most of the TPA photodetectors suffer from low responsivity, preventing this method from being widely adopted for infrared photodetection. Herein, we experimentally demonstrate 2D materials-based TPA avalanche photodiodes achieving an ultrahigh responsivity. The WSe2/MoS2 heterostructure absorbs infrared photons with an energy smaller than the material bandgaps via a low-efficiency TPA process. The significant avalanche effect with a gain of â¼1300 improves the responsivity, resulting in the record-high responsivity of 88 µA/W. We believe that this work paves the way toward building practical and high-efficiency 2D materials-based infrared photodetectors.
RESUMO
Ultrafast light emission from monolayer graphene shows attractive potential for developing integrated light sources for next-generation graphene-based electronic-photonic integrated circuits. In particular, graphene light sources operating at the telecom wavelengths are highly desired for the implementation of graphene-based ultrahigh-speed optical communication. Currently, most of the studies on ultrafast light emission from graphene have been performed in the visible spectrum, while studies on ultrafast emission at the telecom wavelengths remain scarce. Here, we present experimental observations of strong ultrafast thermal emission at telecom wavelengths from wafer-scale monolayer graphene. Our results show that the emission spectra can be strongly modified by the presence of the cavity effect to produce an enhanced emission at telecom wavelengths. We corroborate our experimental results with simulations and show that by designing a suitable cavity thickness, one can easily tune the emission profile from visible to telecom wavelength regardless of the pump power. In addition, we demonstrate that the insertion of a monolayer of hexagonal boron nitride between graphene and the substrate helps improve the thermal stability of graphene, thereby providing more than five times enhancement of the ultrafast thermal emission. Our results provide a potential solution for stable on-chip nanoscale light sources with ultrahigh speed modulation.
RESUMO
Strain-engineered graphene has garnered much attention recently owing to the possibilities of creating substantial energy gaps enabled by pseudo-magnetic fields (PMFs). While theoretical works proposed the possibility of creating large-area PMFs by straining monolayer graphene along three crystallographic directions, clear experimental demonstration of such promising devices remains elusive. Herein, we experimentally demonstrate a triaxially strained suspended graphene structure that has the potential to possess large-scale and quasi-uniform PMFs. Our structure employs uniquely designed metal electrodes that function both as stressors and metal contacts for current injection. Raman characterization and tight-binding simulations suggest the possibility of achieving PMFs over a micrometer-scale area. Current-voltage measurements confirm an efficient current injection into graphene, showing the potential of our devices for a new class of optoelectronic applications. We also theoretically propose a photonic crystal-based laser structure that obtains strongly localized optical fields overlapping with the spatial area under uniform PMFs, thus presenting a practical route toward the realization of graphene lasers.
RESUMO
Graphene-based optoelectronic devices have recently attracted much attention for the next-generation electronic-photonic integrated circuits. However, it remains elusive whether it is feasible to create graphene-based lasers at the chip scale, hindering the realization of such a disruptive technology. In this work, we theoretically propose that Landau-quantized graphene enabled by strain-induced pseudomagnetic field can become an excellent gain medium that supports lasing action without requiring an external magnetic field. Tight-binding theory is employed for calculating electronic states in highly strained graphene while analytical and numerical analyses based on many-particle Hamiltonian allow studying detailed microscopic mechanisms of zero-field graphene Landau level laser dynamics. Our proposed laser presents unique features including a convenient, wide-range tuning of output laser frequency enabled by changing the level of strain in graphene gain media. The chip-scale graphene laser may open new possibilities for graphene-based electronic-photonic integrated circuits.
RESUMO
GeSn alloys offer a promising route towards a CMOS compatible light source and the realization of electronic-photonic integrated circuits. One tactic to improve the lasing performance of GeSn lasers is to use a high Sn content, which improves the directness. Another popular approach is to use a low to moderate Sn content with either compressive strain relaxation or tensile strain engineering, but these strain engineering techniques generally require optical cavities to be suspended in air, which leads to poor thermal management. In this work, we develop a novel dual insulator GeSn-on-insulator (GeSnOI) material platform that is used to produce strain-relaxed GeSn microdisks stuck on a substrate. By undercutting only one insulating layer (i.e., Al2O3), we fabricate microdisks sitting on SiO2, which attain three key properties for a high-performance GeSn laser: removal of harmful compressive strain, decent thermal management, and excellent optical confinement. We believe that an increase in the Sn content of GeSn layers on our platform can allow us to achieve improved lasing performance.
RESUMO
The creation of CMOS compatible light sources is an important step for the realization of electronic-photonic integrated circuits. An efficient CMOS-compatible light source is considered the final missing component towards achieving this goal. In this work, we present a novel crossbeam structure with an embedded optical cavity that allows both a relatively high and fairly uniform biaxial strain of â¼0.9% in addition to a high-quality factor of >4,000 simultaneously. The induced biaxial strain in the crossbeam structure can be conveniently tuned by varying geometrical factors that can be defined by conventional lithography. Comprehensive photoluminescence measurements and analyses confirmed that optical gain can be significantly improved via the combined effect of low temperature and high strain, which is supported by a three-fold reduction of the full width at half maximum of a cavity resonance at â¼1,940 nm. Our demonstration opens up the possibility of further improving the performance of germanium lasers by harnessing geometrically amplified biaxial strain.
RESUMO
Germanium-tin-on-insulator (GSOI) has emerged as a new platform for three-dimensional (3D) photonic-integrated circuits (PICs). We report, to our knowledge, the first demonstration of GeSn dual-waveband resonant-cavity-enhanced photodetectors (RCE PDs) on GSOI platforms with resonance-enhanced responsivity at both 2 µm and 1.55 µm bands. 10% Sn is introduced to the GeSn absorbing layer to extend the detection wavelength to the 2 µm band. A vertical Fabry-Perot cavity is designed to enhance the responsivity. The measured responsivity spectra show resonance peaks that cover a wide wavelength range near both the 2 µm and conventional telecommunication bands. This work demonstrates that GeSn dual-waveband RCE PDs on a GSOI platform are promising for CMOS-compatible 3D PICs for optoelectronic applications in 2 µm and telecommunication bands.
RESUMO
A silicon-compatible light source is the final missing piece for completing high-speed, low-power on-chip optical interconnects. In this paper, we present a germanium nanowire light emitter that encompasses all the aspects of potential low-threshold lasers: highly strained germanium gain medium, strain-induced pseudoheterostructure, and high-Q nanophotonic cavity. Our nanowire structure presents greatly enhanced photoluminescence into cavity modes with measured quality factors of up to 2000. By varying the dimensions of the germanium nanowire, we tune the emission wavelength over more than 400 nm with a single lithography step. We find reduced optical loss in optical cavities formed with germanium under high (>2.3%) tensile strain. Our compact, high-strain cavities open up new possibilities for low-threshold germanium-based lasers for on-chip optical interconnects.
RESUMO
Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.
RESUMO
A germanium-on-insulator (GOI) p-i-n photodetector, monolithically integrated on a silicon (Si) substrate, is demonstrated. GOI is formed by lateral-overgrowth (LAT-OVG) of Ge on silicon dioxide (SiO(2)) through windows etched in SiO(2) on Si. The photodetector shows excellent diode characteristics with high on/off ratio (6 × 10(4)), low dark current, and flat reverse current-voltage (I-V) characteristics. Enhanced light absorption up to 1550 nm is observed due to the residual biaxial tensile strain induced during the epitaxial growth of Ge caused by cooling after the deposition. This truly Si-compatible Ge photodetector using monolithic integration enables new opportunities for high-performance GOI based photonic devices on Si platform.
RESUMO
We present germanium microdisk optical resonators under a large biaxial tensile strain using a CMOS-compatible fabrication process. Biaxial tensile strain of ~0.7% is achieved by means of a stress concentration technique that allows the strain level to be customized by carefully selecting certain lithographic dimensions. The partial strain relaxation at the edges of a patterned germanium microdisk is compensated by depositing compressively stressed silicon nitride layer. Two-dimensional Raman spectroscopy measurements along with finite-element method simulations confirm a relatively homogeneous strain distribution within the final microdisk structure. Photoluminescence results show clear optical resonances due to whispering gallery modes which are in good agreement with finite-difference time-domain optical simulations. Our bandgap-customizable microdisks present a new route towards an efficient germanium light source for on-chip optical interconnects.
RESUMO
We report improved minority carrier lifetimes in n-type-doped and tensile-strained germanium by measuring direct bandgap photoluminescence from germanium-on-insulator substrates with various levels of defect density. We first describe a method to fabricate a high-quality germanium-on-insulator substrate by employing direct wafer bonding and chemical-mechanical polishing. Raman spectroscopy measurement was performed to assess the purity of the transferred layer on an insulator. Using time-resolved photoluminescence decay measurement, we observe that minority carrier lifetimes can be improved by over a factor of 3 as the defective top interface of our material stack is removed. Our high-quality germanium-on-insulator should be an ideal platform for high-performance, germanium-based photonic devices for on-chip optical interconnects.
RESUMO
Semiconductor heterostructures play a vital role in photonics and electronics. They are typically realized by growing layers of different materials, complicating fabrication and limiting the number of unique heterojunctions on a wafer. In this Letter, we present single-material nanowires which behave exactly like traditional heterostructures. These pseudoheterostructures have electronic band profiles that are custom-designed at the nanoscale by strain engineering. Since the band profile depends only on the nanowire geometry with this approach, arbitrary band profiles can be individually tailored at the nanoscale using existing nanolithography. We report the first experimental observations of spatially confined, greatly enhanced (>200×), and wavelength-shifted (>500 nm) emission from strain-induced potential wells that facilitate effective carrier collection at room temperature. This work represents a fundamentally new paradigm for creating nanoscale devices with full heterostructure behavior in photonics and electronics.
RESUMO
Mechanical forces induced by high-speed oscillations provide an elegant way to dynamically alter the fundamental properties of materials such as refractive index, absorption coefficient and gain dynamics. Although the precise control of mechanical oscillation has been well developed in the past decades, the notion of dynamic mechanical forces has not been harnessed for developing tunable lasers. Here we demonstrate actively tunable mid-infrared laser action in group-IV nanomechanical oscillators with a compact form factor. A suspended GeSn cantilever nanobeam on a Si substrate is resonantly driven by radio-frequency waves. Electrically controlled mechanical oscillation induces elastic strain that periodically varies with time in the GeSn nanobeam, enabling actively tunable lasing emission at >2 µm wavelengths. By utilizing mechanical resonances in the radio frequency as a driving mechanism, this work presents wide-range mid-infrared tunable lasers with ultralow tuning power consumption.
RESUMO
Despite the potential of graphene for building a variety of quantum photonic devices, its centrosymmetric nature forbids the observation of second harmonic generation (SHG) for developing second-order nonlinear devices. To activate SHG in graphene, extensive research efforts have been directed towards disrupting graphene's inversion symmetry using external stimuli like electric fields. However, these methods fail to engineer graphene's lattice symmetry, which is the root cause of the forbidden SHG. Here, we harness strain engineering to directly manipulate graphene's lattice arrangement and induce sublattice polarization to activate SHG. Surprisingly, the SHG signal is boosted 50-fold at low temperatures, which can be explained by resonant transitions between strain-induced pseudo-Landau levels. The second-order susceptibility of strained graphene is found to be larger than that of hexagonal boron nitride with intrinsic broken inversion symmetry. Our demonstration of strong SHG in strained graphene offers promising possibilities for developing high-efficiency nonlinear devices for integrated quantum circuits.
RESUMO
Nanowires are promising platforms for realizing ultra-compact light sources for photonic integrated circuits. In contrast to impressive progress on light confinement and stimulated emission in III-V and II-VI semiconductor nanowires, there has been no experimental demonstration showing the potential to achieve strong cavity effects in a bottom-up grown single group-IV nanowire, which is a prerequisite for realizing silicon-compatible infrared nanolasers. Herein, we address this limitation and present an experimental observation of cavity-enhanced strong photoluminescence from a single Ge/GeSn core/shell nanowire. A sufficiently large Sn content ( ~ 10 at%) in the GeSn shell leads to a direct bandgap gain medium, allowing a strong reduction in material loss upon optical pumping. Efficient optical confinement in a single nanowire enables many round trips of emitted photons between two facets of a nanowire, achieving a narrow width of 3.3 nm. Our demonstration opens new possibilities for ultrasmall on-chip light sources towards realizing photonic-integrated circuits in the underexplored range of short-wave infrared (SWIR).
RESUMO
The technology to develop a large number of identical coherent light sources on an integrated photonics platform holds the key to the realization of scalable optical and quantum photonic circuits. Herein, a scalable technique is presented to produce identical on-chip lasers by dynamically controlled strain engineering. By using localized laser annealing that can control the strain in the laser gain medium, the emission wavelengths of several GeSn one-dimensional photonic crystal nanobeam lasers are precisely matched whose initial emission wavelengths are significantly varied. The method changes the GeSn crystal structure in a region far away from the gain medium by inducing Sn segregation in a dynamically controllable manner, enabling the emission wavelength tuning of more than 10 nm without degrading the laser emission properties such as intensity and linewidth. The authors believe that the work presents a new possibility to scale up the number of identical light sources for the realization of large-scale photonic-integrated circuits.
RESUMO
Infrared machine vision system for object perception and recognition is becoming increasingly important in the Internet of Things era. However, the current system suffers from bulkiness and inefficiency as compared to the human retina with the intelligent and compact neural architecture. Here, we present a retina-inspired mid-infrared (MIR) optoelectronic device based on a two-dimensional (2D) heterostructure for simultaneous data perception and encoding. A single device can perceive the illumination intensity of a MIR stimulus signal, while encoding the intensity into a spike train based on a rate encoding algorithm for subsequent neuromorphic computing with the assistance of an all-optical excitation mechanism, a stochastic near-infrared (NIR) sampling terminal. The device features wide dynamic working range, high encoding precision, and flexible adaption ability to the MIR intensity. Moreover, an inference accuracy more than 96% to MIR MNIST data set encoded by the device is achieved using a trained spiking neural network (SNN).