RESUMO
A ternary catalysis system was investigated to evaluate the comparative degradation of toxic fungicide metabolite 3,5-dichloroaniline (3,5-DCA) by laccase and MnO2 with mediators. In this study, copper based fungal enzyme laccase (Trametes versicolor origin) and metal catalyst MnO2 with various combinations of phenolic mediators (catechol, syringaldehyde, syringic acid, caffeic acid and gallic acid) were monitored to optimize and screen the better one for 3,5-DCA degradation assay. Catechol showed better potentiality in reduction of 3,5-DCA among the studied mediators. Catechol (2mM) showed the highest reduction rate (99-100%) followed by syringaldehyde (40.51%) with 2U/mL of laccase at 25 °C within 24 h reaction time. Similarly, complete degradation of 3,5-DCA was obtained by catechol (2mM) with 2 mg/mL of MnO2 in MnO2-mediator assay. The notable finding of current study indicated the triggering of catechol for better 3,5-DCA degradation at higher pH condition but inertness in laccase-mediator assay due to laccase destabilization. The reaction pathways of optimized mediator-based catalysis for laccase and MnO2 were proposed. Finally, the optimized laccase-catechol based degradation was considered as a pioneer green catalysis approach to reduce the toxic metabolite 3,5-DCA concentrations in aqueous medium as compared to MnO2-catechol catalysis.
Assuntos
Compostos de Anilina/análise , Fungicidas Industriais/análise , Lacase/metabolismo , Compostos de Manganês/química , Óxidos/química , Trametes/enzimologia , Compostos de Anilina/metabolismo , Benzaldeídos/química , Catálise , Catecóis/química , Fungicidas Industriais/metabolismo , Fenóis/químicaRESUMO
Incidental pesticide application on farmlands can result in contamination of off-target biota, soil, groundwater, and surrounding ecosystems. To manage these pesticide contaminations sustainably, it is important to utilize advanced approaches to pesticide decontamination. This review assesses various innovative strategies applied for remediating pesticide-contaminated sites, including physical, chemical, biological, and nanoremediation. Integrated remediation approaches appear to be more effective than singular technologies. Bioremediation and chemical remediation are considered suitable and sustainable strategies for decontaminating contaminated soils. Furthermore, this study highlights key mechanisms underlying advanced pesticide remediation that have not been systematically studied. The transformation of applied pesticides into metabolites through various biotic and chemical triggering factors is well documented. Ex-situ and in-situ technologies are the two main categories employed for pesticide remediation. However, when selecting a remediation technique, it is important to consider factors such as application sites, cost-effectiveness, and specific purpose. In this review, the sustainability of existing pesticide remediation strategies is thoroughly analyzed as a pioneering effort. Additionally, the study summarizes research uncertainties and technical challenges associated with different remediation approaches. Lastly, specific recommendations and policy advocacy are suggested to enhance contemporary remediation approaches for cleaning up pesticide-contaminated sites.
Assuntos
Recuperação e Remediação Ambiental , Praguicidas , Poluentes do Solo , Ecossistema , Biodegradação Ambiental , Poluentes do Solo/análise , SoloRESUMO
Contamination of the natural ecosystem by heavy metals, organic pollutants, and hazardous waste severely impacts on health and survival of humans, animals, plants, and microorganisms. Diverse chemical and physical treatments are employed in many countries, however, the acceptance of these treatments are usually poor because of taking longer time, high cost, and ineffectiveness in contaminated areas with a very high level of metal contents. Bioremediation is an eco-friendly and efficient method of reclaiming contaminated soils and waters with heavy metals through biological mechanisms using potential microorganisms and plant species. Considering the high efficacy, low cost, and abundant availability of biological materials, particularly bacteria, algae, yeasts, and fungi, either in natural or genetically engineered (GE) form, bioremediation is receiving high attention for heavy metal removal. This report comprehensively reviews and critically discusses the biological and green remediation tactics, contemporary technological advances, and their principal applications either in-situ or ex-situ for the remediation of heavy metal contamination in soil and water. A modified PRISMA review protocol is adapted to critically assess the existing research gaps in heavy metals remediation using green and biological drivers. This study pioneers a schematic illustration of the underlying mechanisms of heavy metal bioremediation. Precisely, it pinpoints the research bottleneck during its real-world application as a low-cost and sustainable technology.
Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Animais , Solo , Água , Ecossistema , Biodegradação Ambiental , PlantasRESUMO
Heavy metals occur naturally in very small amounts in living organisms, but exposure to their higher concentrations is hazardous. Heavy metals at hazardous levels are commonly found in foodstuffs of Bangladesh, mainly due to the lack of safety guidelines and poor management of industrial effluents. Several lines of evidence suggest that the level of heavy metals in foodstuffs of Bangladesh is higher than the acceptable limits set by World Health Organization/Food and Agriculture Organization. Literature survey revealed that the sources and transport pathways of heavy metals in the ecosystem and the abundance of heavy metals in the food products of Bangladesh are potential threats to food safety. However, an extensive assessment of the toxicity of heavy metals in food webs is lacking. Although widespread heavy metal contamination in various foodstuffs and environmental matrices have been summarized in some reports, a critical evaluation regarding multi-trophic transfer and the health risk of heavy metal exposure through food chain toxicity in Bangladesh has not been performed. This systematic review critically discussed heavy metal contamination, exposure toxicity, research gaps, existing legislation, and sustainable remediation strategies to enhance Bangladesh's food safety. In particular, this study for the first time explored the potential multi-trophic transfer of heavy metals via food webs in Bangladesh. Furthermore, we recommended a conceptual policy framework to combat heavy metal contaminations in Bangladesh.
Assuntos
Cadeia Alimentar , Metais Pesados , Bangladesh , Ecossistema , Monitoramento Ambiental , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Metais Pesados/análise , Medição de RiscoRESUMO
This study involved analysis and method validation of spirotetramat applied to two phenotypically different Korean vegetables (e.g. Korean cabbage and shallots) to determine the safe pre-harvest residue limit (PHRL) and comparative dissipation patterns. Two steps of the investigation involved greenhouse monitoring during crop cultivation followed by LC-MS/MS analysis. Commercial spirotetramat was sprayed twice with seven-day intervals according to the spray schedule (0, 3, 7, 10, 14, and 21 days before harvest) at the dose recommended by the Ministry of Food and Drug Safety (MFDS), Korea. During the validation of the analytical method, good linearity, specificity, and acceptable recoveries (82%-114% for Korean cabbage and 82%-111% for shallot) were established for spirotetramat and its four metabolites. The calculated biological half-life derived from the first-order reaction (t1/2) of spirotetramat was 4.8 days for Korean cabbage and 4.0 days for shallot, respectively. The safe PHRL for Korean cabbage was suggested at 7 days, due to permissible spirotetramat concentration in terms of an acceptable MRL. The findings of the study will be used as the analytical reference point for developing spirotetramat safety guidelines for use in the vegetables investigated.
Assuntos
Brassica , Inseticidas , Resíduos de Praguicidas , Compostos Aza , Brassica/química , Cromatografia Líquida/métodos , Meia-Vida , Inseticidas/análise , Resíduos de Praguicidas/análise , Compostos de Espiro , Espectrometria de Massas em Tandem/métodos , Verduras/metabolismoRESUMO
The uncertain fate and transport pathways of applied pesticides are the key hidden threats with respect to the safety and quality evaluation of foodstuffs in Bangladesh. The risk assessment of and uncertainty about applied pesticides are poorly explored due to weak regulatory systems, farmer ignorance, intensive agricultural practices, and lack of available research data on improper handling of pesticides on farming lands with poor phytosanitary management. However, increasing evidence suggests that the prevalence of pesticides in common foodstuffs is due to their uptake by crops and improper management of crop protection practices. Besides, the biotransformation of pesticides in common Bangladeshi food products is poorly understood. Several studies have reported higher concentrations of pesticides than allowed by European Union guidelines in Bangladeshi foodstuffs. However, to date, no systematic review with critical discussion on current research findings and knowledge gaps concerning fate, uncertainty, and health risks of pesticides in the foodstuffs of Bangladesh is published. Therefore, this review summarizes the findings of existing literature on pesticide residue in foodstuffs and points out the weaknesses in the regulatory system and risk assessments for highlighting the critical challenges to food safety in Bangladesh as compared to global food policy. In addition, strategies for the sustainable management of residual pesticides are also discussed.
Assuntos
Praguicidas , Bangladesh , Humanos , Política Nutricional , IncertezaRESUMO
Microplastics (MP) are a persistent and silent threat to the environment and are already considered a significant problem in aquatic environments. However, the presence of MP in soils and terrestrial ecosystems has been largely unexplored. Recent research has identified the risk of MP transfer from terrestrial agriculture to the human food chain. Thus, MP should be treated as a future threat to food safety and sustainable agriculture. Several reviews have focused on MP effects within global environmental matrices. However, scant investigations on the disposition, ecological impact and remediation strategies of MP have been reported in case of unexplored soil ecosystems as compared to aquatic ecosystems. Therefore, this review focuses on the contemporary global MP research with respect to research opportunities and related challenges of MP for the soil and terrestrial ecosystem from a Bangladesh perspective.