Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 21(6): 1630-3, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21324686

RESUMO

Eribulin mesylate (Halaven™), a totally synthetic analog of the marine polyether macrolide halichondrin B, has recently been approved in the United States as a treatment for breast cancer. It is also currently under regulatory review in Japan and the European Union. Our continuing medicinal chemistry efforts on this scaffold have focused on oral bioavailability, brain penetration and efficacy against multidrug resistant (MDR) tumors by lowering the susceptibility of these compounds to P-glycoprotein (P-gp)-mediated drug efflux. Replacement of the 1,2-amino alcohol C32 side chain of eribulin with fragments neutral at physiologic pH led to the identification of analogs with significantly lower P-gp susceptibility. The analogs maintained low- to sub-nM potency in vitro against both sensitive and MDR cell lines. Within this series, increasing lipophilicity generally led to decreased P-gp susceptibility. In addition to potency in cell culture, these compounds showed in vivo activity in mouse xenograft models.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Antineoplásicos/química , Furanos/química , Cetonas/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Disponibilidade Biológica , Linhagem Celular Tumoral , Furanos/farmacocinética , Furanos/farmacologia , Humanos , Cetonas/farmacocinética , Cetonas/farmacologia , Camundongos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Bioorg Med Chem Lett ; 21(6): 1639-43, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21324687

RESUMO

Novel second generation analogs of eribulin mesylate, a tubulin agent recently approved for the treatment of breast cancer, are reported. Our recent efforts have focused on expanding the target indications for this class of compounds to other tumor types. Herein, we describe the design, synthesis and evaluation of eribulin analogs active against brain tumor cell lines in vitro and corresponding brain tumor models in mice. Attenuation of basicity of the amino group(s) in the C32 side-chain region led to compounds with lower susceptibility to P-gp mediated drug efflux, allowing these compounds to permeate through the blood-brain barrier. In preclinical in vivo studies, these compounds showed significantly higher levels in the brain and cerebrospinal fluid as compared to eribulin. In addition, analogs within this series showed antitumor activity in an orthotopic murine model of human glioblastoma.


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Furanos/farmacocinética , Furanos/uso terapêutico , Cetonas/farmacocinética , Cetonas/uso terapêutico , Animais , Barreira Hematoencefálica , Linhagem Celular Tumoral , Modelos Animais de Doenças , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C
3.
Bioorg Med Chem Lett ; 21(6): 1634-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21324692

RESUMO

Eribulin mesylate is a newly approved treatment for locally advanced and metastatic breast cancer. We targeted oral bioavailability and efficacy against multidrug resistant (MDR) tumors for further work. The design, synthesis and evaluation of novel amine-containing analogs of eribulin mesylate are described in this part. Attenuation of basicity of the amino group(s) in the C32 side-chain region led to compounds with low susceptibility to PgP-mediated drug efflux. These compounds were active against MDR tumor cell lines in vitro and in xenograft models in vivo, in addition to being orally bioavailable.


Assuntos
Antineoplásicos/farmacologia , Furanos/farmacologia , Cetonas/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Resistencia a Medicamentos Antineoplásicos , Furanos/administração & dosagem , Furanos/farmacocinética , Humanos , Cetonas/administração & dosagem , Cetonas/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Rep ; 9(1): 4107, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858438

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) has been linked to several important chronic medical conditions many of which are associated with advancing age. A variety of inputs including the amino acid leucine are required for full mTORC1 activation. The cytoplasmic proteins Sestrin1 and Sestrin2 specifically bind to the multiprotein complex GATOR2 and communicate leucine sufficiency to the mTORC1 pathway activation complex. Herein, we report NV-5138, a novel orally bioavailable compound that binds to Sestrin2 and activates mTORC1 both in vitro and in vivo. NV-5138 like leucine transiently activates mTORC1 in several peripheral tissues, but in contrast to leucine uniquely activates this complex in the brain due lack of metabolism and utilization in protein synthesis. As such, NV-5138 will permit the exploration in areas of unmet medical need including neuropsychiatric conditions and cognition which have been linked to the activation status of mTORC1.


Assuntos
Encéfalo/metabolismo , Descoberta de Drogas , Leucina/análogos & derivados , Leucina/farmacocinética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Administração Oral , Animais , Desenho de Fármacos , Células HEK293 , Humanos , Leucina/administração & dosagem , Masculino , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Transaminases/metabolismo
5.
J Am Chem Soc ; 130(28): 8923-30, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-18570425

RESUMO

The catalytic activity of a series of ruthenium(II) complexes in azide-alkyne cycloadditions has been evaluated. The [Cp*RuCl] complexes, such as Cp*RuCl(PPh 3) 2, Cp*RuCl(COD), and Cp*RuCl(NBD), were among the most effective catalysts. In the presence of catalytic Cp*RuCl(PPh 3) 2 or Cp*RuCl(COD), primary and secondary azides react with a broad range of terminal alkynes containing a range of functionalities selectively producing 1,5-disubstituted 1,2,3-triazoles; tertiary azides were significantly less reactive. Both complexes also promote the cycloaddition reactions of organic azides with internal alkynes, providing access to fully-substituted 1,2,3-triazoles. The ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) appears to proceed via oxidative coupling of the azide and alkyne reactants to give a six-membered ruthenacycle intermediate, in which the first new carbon-nitrogen bond is formed between the more electronegative carbon of the alkyne and the terminal, electrophilic nitrogen of the azide. This step is followed by reductive elimination, which forms the triazole product. DFT calculations support this mechanistic proposal and indicate that the reductive elimination step is rate-determining.


Assuntos
Alcinos/química , Azidas/química , Rutênio/química , Catálise , Ciclização , Compostos Organometálicos/química , Triazóis/síntese química
6.
Nat Commun ; 9(1): 548, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416044

RESUMO

The small G-protein Rheb activates the mechanistic target of rapamycin complex 1 (mTORC1) in response to growth factor signals. mTORC1 is a master regulator of cellular growth and metabolism; aberrant mTORC1 signaling is associated with fibrotic, metabolic, and neurodegenerative diseases, cancers, and rare disorders. Point mutations in the Rheb switch II domain impair its ability to activate mTORC1. Here, we report the discovery of a small molecule (NR1) that binds Rheb in the switch II domain and selectively blocks mTORC1 signaling. NR1 potently inhibits mTORC1 driven phosphorylation of ribosomal protein S6 kinase beta-1 (S6K1) but does not inhibit phosphorylation of AKT or ERK. In contrast to rapamycin, NR1 does not cause inhibition of mTORC2 upon prolonged treatment. Furthermore, NR1 potently and selectively inhibits mTORC1 in mouse kidney and muscle in vivo. The data presented herein suggest that pharmacological inhibition of Rheb is an effective approach for selective inhibition of mTORC1 with therapeutic potential.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X , Células HEK293 , Humanos , Células Jurkat , Células MCF-7 , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Bibliotecas de Moléculas Pequenas/química
7.
ACS Infect Dis ; 1(5): 222-30, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-27622650

RESUMO

Negamycin is a hydrophilic antimicrobial translation inhibitor that crosses the lipophilic inner membrane of Escherichia coli via at least two transport routes to reach its intracellular target. In a minimal salts medium, negamycin's peptidic nature allows illicit entry via a high-affinity route by hijacking the Dpp dipeptide transporter. Transport via a second, low-affinity route is energetically driven by the membrane potential, seemingly without the direct involvement of a transport protein. In mouse thigh models of E. coli infection, no evidence for Dpp-mediated transport of negamycin was found. The implication is that for the design of new negamycin-based analogs, the physicochemical properties required for cell entry via the low-affinity route need to be retained to achieve clinical success in the treatment of infectious diseases. Furthermore, clinical resistance to such analogs due to mutations affecting their ribosomal target or transport is expected to be rare and similar to that of aminoglycosides.

8.
ACS Med Chem Lett ; 6(8): 930-5, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26288696

RESUMO

Negamycin is a natural product with antibacterial activity against a broad range of Gram-negative pathogens. Recent revelation of its ribosomal binding site and mode of inhibition has reinvigorated efforts to identify improved analogues with clinical potential. Translation-inhibitory potency and antimicrobial activity upon modification of different moieties of negamycin were in line with its observed ribosomal binding conformation, reaffirming stringent structural requirements for activity. However, substitutions on the N6 amine were tolerated and led to N6-(3-aminopropyl)-negamycin (31f), an analogue showing 4-fold improvement in antibacterial activity against key bacterial pathogens. This represents the most potent negamycin derivative to date and may be a stepping stone toward clinical development of this novel antibacterial class.

9.
Org Lett ; 6(21): 3789-92, 2004 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-15469350

RESUMO

[structure: see text] A synthesis of arylnaphthoquinone 22 corresponding to the CD-D' unit of angelmicin B via the Suzuki coupling of the D' arylboronic acid 15 with the CD bromonaphthoquinone 21 is described. The mild conditions for the Suzuki cross-coupling leading to 22 may prove to be useful for the eventual late-stage coupling of the two highly functionalized halves of angelmicin B.


Assuntos
Antraquinonas/síntese química , Modelos Químicos , Naftoquinonas/síntese química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa