Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(18): 3377-3392.e6, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738965

RESUMO

The ubiquitin-proteasome system plays a critical role in biology by regulating protein degradation. Despite their importance, precise recognition specificity is known for a few of the 600 E3s. Here, we establish a two-pronged strategy for identifying and mapping critical residues of internal degrons on a proteome-scale in HEK-293T cells. We employ global protein stability profiling combined with machine learning to identify 15,800 peptides likely to contain sequence-dependent degrons. We combine this with scanning mutagenesis to define critical residues for over 5,000 predicted degrons. Focusing on Cullin-RING ligase degrons, we generated mutational fingerprints for 219 degrons and developed DegronID, a computational algorithm enabling the clustering of degron peptides with similar motifs. CRISPR analysis enabled the discovery of E3-degron pairs, of which we uncovered 16 pairs that revealed extensive degron variability and structural determinants. We provide the visualization of these data on the public DegronID data browser as a resource for future exploration.


Assuntos
Algoritmos , Proteoma , Proteoma/genética , Núcleo Celular , Análise por Conglomerados , Ubiquitina-Proteína Ligases/genética
2.
Mol Cell ; 83(1): 57-73.e9, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608670

RESUMO

The TFE3 and MITF master transcription factors maintain metabolic homeostasis by regulating lysosomal, melanocytic, and autophagy genes. Previous studies posited that their cytosolic retention by 14-3-3, mediated by the Rag GTPases-mTORC1, was key for suppressing transcriptional activity in the presence of nutrients. Here, we demonstrate using mammalian cells that regulated protein stability plays a fundamental role in their control. Amino acids promote the recruitment of TFE3 and MITF to the lysosomal surface via the Rag GTPases, activating an evolutionarily conserved phospho-degron and leading to ubiquitination by CUL1ß-TrCP and degradation. Elucidation of the minimal functional degron revealed a conserved alpha-helix required for interaction with RagA, illuminating the molecular basis for a severe neurodevelopmental syndrome caused by missense mutations in TFE3 within the RagA-TFE3 interface. Additionally, the phospho-degron is recurrently lost in TFE3 genomic translocations that cause kidney cancer. Therefore, two divergent pathologies converge on the loss of protein stability regulation by nutrients.


Assuntos
Aminoácidos , Fator de Transcrição Associado à Microftalmia , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Aminoácidos/metabolismo , Nutrientes , Estabilidade Proteica , Lisossomos/genética , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Mamíferos/metabolismo
4.
Science ; 381(6660): eadh5021, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616343

RESUMO

Cells use ubiquitin to mark proteins for proteasomal degradation. Although the proteasome also eliminates proteins that are not ubiquitinated, how this occurs mechanistically is unclear. Here, we found that midnolin promoted the destruction of many nuclear proteins, including transcription factors encoded by the immediate-early genes. Diverse stimuli induced midnolin, and its overexpression was sufficient to cause the degradation of its targets by a mechanism that did not require ubiquitination. Instead, midnolin associated with the proteasome via an α helix, used its Catch domain to bind a region within substrates that can form a ß strand, and used a ubiquitin-like domain to promote substrate destruction. Thus, midnolin contains three regions that function in concert to target a large set of nuclear proteins to the proteasome for degradation.


Assuntos
Genes Precoces , Proteínas Nucleares , Complexo de Endopeptidases do Proteassoma , Proteólise , Transcrição Gênica , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina , Ubiquitinação , Células HEK293 , Células NIH 3T3
5.
Cureus ; 12(8): e9628, 2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32923229

RESUMO

Patients with heart metastases could present insidiously, with symptoms that mimic those of congestive heart failure or acute coronary syndrome. Our patient initially presented with vague lower sternal and abdominal pain and had a past medical history of coronary artery disease. Her first two troponin levels were elevated, and her EKG was significant for ischemic changes. Echocardiography showed a large mass in the right ventricle and the presence of pericardial effusion. CT scan of the thorax, abdomen, and pelvis showed multiple pulmonary nodules as well as liver metastases. Our patient opted not to pursue further imaging such as cardiac MRI or a liver biopsy. It is imperative that medical professionals are aware of the presentational overlap between acute coronary syndrome and metastatic heart disease, in order to ensure proper diagnosis and management of the latter with echocardiography, cardiac MRI, and possibly surgery.

6.
Science ; 356(6338): 608-616, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28495746

RESUMO

Multiple human diseases ensue from a hereditary or acquired deficiency of iron-transporting protein function that diminishes transmembrane iron flux in distinct sites and directions. Because other iron-transport proteins remain active, labile iron gradients build up across the corresponding protein-deficient membranes. Here we report that a small-molecule natural product, hinokitiol, can harness such gradients to restore iron transport into, within, and/or out of cells. The same compound promotes gut iron absorption in DMT1-deficient rats and ferroportin-deficient mice, as well as hemoglobinization in DMT1- and mitoferrin-deficient zebrafish. These findings illuminate a general mechanistic framework for small molecule-mediated site- and direction-selective restoration of iron transport. They also suggest that small molecules that partially mimic the function of missing protein transporters of iron, and possibly other ions, may have potential in treating human diseases.


Assuntos
Ferro/metabolismo , Animais , Células CACO-2 , Absorção Gastrointestinal , Hemoglobinas/metabolismo , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Monoterpenos/metabolismo , Ratos , Saccharomyces cerevisiae/metabolismo , Tropolona/análogos & derivados , Tropolona/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa