RESUMO
Cytosine methylation of DNA is a widespread modification of DNA that plays numerous critical roles. In the yeast Cryptococcus neoformans, CG methylation occurs in transposon-rich repeats and requires the DNA methyltransferase Dnmt5. We show that Dnmt5 displays exquisite maintenance-type specificity in vitro and in vivo and utilizes similar in vivo cofactors as the metazoan maintenance methylase Dnmt1. Remarkably, phylogenetic and functional analysis revealed that the ancestral species lost the gene for a de novo methylase, DnmtX, between 50-150 mya. We examined how methylation has persisted since the ancient loss of DnmtX. Experimental and comparative studies reveal efficient replication of methylation patterns in C. neoformans, rare stochastic methylation loss and gain events, and the action of natural selection. We propose that an epigenome has been propagated for >50 million years through a process analogous to Darwinian evolution of the genome.
Assuntos
Cryptococcus neoformans/genética , Metilação de DNA/genética , Metiltransferases/genética , Evolução Biológica , Cryptococcus neoformans/metabolismo , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/fisiologia , Metilases de Modificação do DNA/genética , Elementos de DNA Transponíveis/genética , Epigenômica/métodos , Evolução Molecular , Genoma/genética , Metiltransferases/metabolismo , FilogeniaRESUMO
SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/H4K20me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation. It is dysregulated in several cancers. Many of these processes were linked to its catalytic activity. However, deletion and inhibition of SUV420H1 have shown distinct phenotypes, suggesting that the enzyme likely has uncharacterized non-catalytic activities. Our cryoelectron microscopy (cryo-EM), biochemical, biophysical, and cellular analyses reveal how SUV420H1 recognizes its nucleosome substrates, and how histone variant H2A.Z stimulates its catalytic activity. SUV420H1 binding to nucleosomes causes a dramatic detachment of nucleosomal DNA from the histone octamer, which is a non-catalytic activity. We hypothesize that this regulates the accessibility of large macromolecular complexes to chromatin. We show that SUV420H1 can promote chromatin condensation, another non-catalytic activity that we speculate is needed for its heterochromatin functions. Together, our studies uncover and characterize the catalytic and non-catalytic mechanisms of SUV420H1, a key histone methyltransferase that plays an essential role in genomic stability.
Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Cromatina/genética , Microscopia Crioeletrônica , Heterocromatina/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Lisina , Nucleossomos/genética , HumanosRESUMO
The critical role of the INO80 chromatin remodeling complex in transcription is commonly attributed to its nucleosome sliding activity. Here, we have found that INO80 prefers to mobilize hexasomes over nucleosomes. INO80's preference for hexasomes reaches up to â¼60 fold when flanking DNA overhangs approach â¼18-bp linkers in yeast gene bodies. Correspondingly, deletion of INO80 significantly affects the positions of hexasome-sized particles within yeast genes in vivo. Our results raise the possibility that INO80 promotes nucleosome sliding by dislodging an H2A-H2B dimer, thereby making a nucleosome transiently resemble a hexasome. We propose that this mechanism allows INO80 to rapidly mobilize nucleosomes at promoters and hexasomes within gene bodies. Rapid repositioning of hexasomes that are generated in the wake of transcription may mitigate spurious transcription. More generally, such versatility may explain how INO80 regulates chromatin architecture during the diverse processes of transcription, replication, and repair.
Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Chromatin provides both a means to accommodate a large amount of genetic material in a small space and a means to package the same genetic material in different chromatin states. Transitions between chromatin states are enabled by chromatin-remodeling ATPases, which catalyze a diverse range of structural transformations. Biochemical evidence over the last two decades suggests that chromatin-remodeling activities may have emerged by adaptation of ancient DNA translocases to respond to specific features of chromatin. Here, we discuss such evidence and also relate mechanistic insights to our understanding of how chromatin-remodeling enzymes enable different in vivo processes.
Assuntos
Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina , Eucariotos/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , DNA/metabolismo , Humanos , Nucleossomos/metabolismo , Transferases/metabolismoRESUMO
C.neoformans Dnmt5 is an unusually specific maintenance-type CpG methyltransferase (DNMT) that mediates long-term epigenome evolution. It harbors a DNMT domain and SNF2 ATPase domain. We find that the SNF2 domain couples substrate specificity to an ATPase step essential for DNA methylation. Coupling occurs independent of nucleosomes. Hemimethylated DNA preferentially stimulates ATPase activity, and mutating Dnmt5's ATP-binding pocket disproportionately reduces ATPase stimulation by hemimethylated versus unmethylated substrates. Engineered DNA substrates that stabilize a reaction intermediate by mimicking a "flipped-out" conformation of the target cytosine bypass the SNF2 domain's requirement for hemimethylation. This result implies that ATP hydrolysis by the SNF2 domain is coupled to the DNMT domain conformational changes induced by preferred substrates. These findings establish a new role for a SNF2 ATPase: controlling an adjoined enzymatic domain's substrate recognition and catalysis. We speculate that this coupling contributes to the exquisite specificity of Dnmt5 via mechanisms related to kinetic proofreading.
Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Fúngico/metabolismo , Proteínas Fúngicas/metabolismo , Nucleossomos/metabolismo , Adenosina Trifosfatases/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA Fúngico/química , DNA Fúngico/genética , Proteínas Fúngicas/genética , Hidrólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
DNA methylation and H3K9me are hallmarks of heterochromatin in plants and mammals, and are successfully maintained across generations. The biochemical and structural basis for this maintenance is poorly understood. The maintenance DNA methyltransferase from Zea mays, ZMET2, recognizes dimethylation of H3K9 via a chromodomain (CD) and a bromo adjacent homology (BAH) domain, which flank the catalytic domain. Here, we show that dinucleosomes are the preferred ZMET2 substrate, with DNA methylation preferentially targeted to linker DNA. Electron microscopy shows one ZMET2 molecule bridging two nucleosomes within a dinucleosome. We find that the CD stabilizes binding, whereas the BAH domain enables allosteric activation by the H3K9me mark. ZMET2 further couples recognition of H3K9me to an increase in the specificity for hemimethylated versus unmethylated DNA. We propose a model in which synergistic coupling between recognition of nucleosome spacing, H3K9 methylation, and DNA modification allows ZMET2 to maintain DNA methylation in heterochromatin with high fidelity.
Assuntos
Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Nucleossomos/enzimologia , Proteínas de Plantas/metabolismo , Animais , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/ultraestrutura , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Microscopia Eletrônica , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato , Xenopus laevis/genética , Xenopus laevis/metabolismoRESUMO
The yeast INO80 chromatin remodeling complex plays essential roles in regulating DNA damage repair, replication, and promoter architecture. INO80's role in these processes is likely related to its ability to slide nucleosomes, but the underlying mechanism is poorly understood. Here we use ensemble and single-molecule enzymology to study INO80-catalyzed nucleosome sliding. We find that the rate of nucleosome sliding by INO80 increases â¼100-fold when the flanking DNA length is increased from 40 to 60 bp. Furthermore, once sliding is initiated, INO80 moves the nucleosome rapidly at least 20 bp without pausing to re-assess flanking DNA length, and it can change the direction of nucleosome sliding without dissociation. Finally, we show that the Nhp10 module of INO80 plays an auto-inhibitory role, tuning INO80's switch-like response to flanking DNA. Our results indicate that INO80 is a highly processive remodeling motor that is tightly regulated by both substrate cues and non-catalytic subunits.
Assuntos
Montagem e Desmontagem da Cromatina , Replicação do DNA , DNA Fúngico/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Reparo do DNA , DNA Fúngico/genética , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Nuclear DNA in eukaryotes is wrapped around histone proteins to form nucleosomes on a chromatin fiber. Dynamic folding of the chromatin fiber into loops and variations in the degree of chromatin compaction regulate essential processes such as transcription, recombination, and mitotic chromosome segregation. Our understanding of the physical properties that allow chromatin to be dynamically remodeled even in highly compacted states is limited. Previously, we reported that chromatin has an intrinsic capacity to phase separate and form dynamic liquid-like condensates, which can be regulated by cellular factors [B. A. Gibson et al., Cell 179, 470-484.e421 (2019)]. Recent contradictory reports claim that a specific set of solution conditions is required for fluidity in condensates that would otherwise be solid [J. C. Hansen, K. Maeshima, M. J. Hendzel, Epigenetics Chromatin 14, 50 (2021); H. Strickfaden et al., Cell 183, 1772-1784.e1713 (2020)]. We sought to resolve these discrepancies, as our ability to translate with confidence these biophysical observations to cells requires their precise characterization. Moreover, whether chromatin assemblies are dynamic or static affects how processes such as transcription, loop extrusion, and remodeling will engage them inside cells. Here, we show in diverse conditions and without specific buffering components that chromatin fragments form phase separated fluids in vitro. We also explore how sample preparation and imaging affect the experimental observation of chromatin condensate dynamics. Last, we describe how liquid-like in vitro behaviors can translate to the locally dynamic but globally constrained chromatin movement observed in cells.
Assuntos
Cromatina , Histonas , Histonas/metabolismo , Nucleossomos , DNA/metabolismo , Montagem e Desmontagem da CromatinaRESUMO
Gene silencing by heterochromatin is proposed to occur in part as a result of the ability of heterochromatin protein 1 (HP1) proteins to spread across large regions of the genome, compact the underlying chromatin and recruit diverse ligands. Here we identify a new property of the human HP1α protein: the ability to form phase-separated droplets. While unmodified HP1α is soluble, either phosphorylation of its N-terminal extension or DNA binding promotes the formation of phase-separated droplets. Phosphorylation-driven phase separation can be promoted or reversed by specific HP1α ligands. Known components of heterochromatin such as nucleosomes and DNA preferentially partition into the HP1α droplets, but molecules such as the transcription factor TFIIB show no preference. Using a single-molecule DNA curtain assay, we find that both unmodified and phosphorylated HP1α induce rapid compaction of DNA strands into puncta, although with different characteristics. We show by direct protein delivery into mammalian cells that an HP1α mutant incapable of phase separation in vitro forms smaller and fewer nuclear puncta than phosphorylated HP1α. These findings suggest that heterochromatin-mediated gene silencing may occur in part through sequestration of compacted chromatin in phase-separated HP1 droplets, which are dissolved or formed by specific ligands on the basis of nuclear context.
Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA/metabolismo , Inativação Gênica , Heterocromatina/química , Heterocromatina/genética , Humanos , Ligantes , Camundongos , Células NIH 3T3 , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Fosforilação , Solubilidade , Fator de Transcrição TFIIB/metabolismoRESUMO
The ATP-dependent chromatin assembly factor (ACF) spaces nucleosomes to promote formation of silent chromatin. Two copies of its ATPase subunit SNF2h bind opposite sides of a nucleosome, but how these protomers avoid competition is unknown. SNF2h senses the length of DNA flanking a nucleosome via its HAND-SANT-SLIDE (HSS) domain, yet it is unclear how this interaction enhances remodeling. Using covalently connected SNF2h dimers we show that dimerization accelerates remodeling and that the HSS contributes to communication between protomers. We further identify a nucleotide-dependent conformational change in SNF2h. In one conformation the HSS binds flanking DNA, and in another conformation the HSS engages the nucleosome core. Based on these results, we propose a model in which DNA length sensing and translocation are performed by two distinct conformational states of SNF2h. Such separation of function suggests that these activities could be independently regulated to affect remodeling outcomes.
Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Nucleotídeos/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cromatina/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA/química , DNA/genética , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Nucleossomos/genética , Nucleossomos/metabolismo , Nucleotídeos/química , Nucleotídeos/genética , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Termodinâmica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
In the past decade, two major advances in our understanding of nuclear organization have taken the field of gene regulation by storm. First, technologies that can analyze the three-dimensional conformation of chromatin have revealed how the genome is organized and have provided novel insights into how regulatory regions in the genome interact. Second, the recognition that many proteins can form membraneless compartments through liquid-liquid phase separation (LLPS) has challenged long-standing notions of how proteins within the nucleus are organized and has offered a tantalizing general mechanism by which many aspects of nuclear function may be regulated. However, the functional roles of chromatin topology and LLPS in regulating gene expression remain poorly understood. These topics were discussed with great fervor during an open discussion held at a recent workshop titled 'Chromatin-based regulation of development' organized by The Company of Biologists. Here, we summarize the major points covered during this debate and discuss how they tie into current thinking in the field of gene regulation.
Assuntos
Cromatina/química , Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Conformação de Ácido Nucleico , Animais , Elementos Facilitadores Genéticos/genética , Humanos , Proteínas Repressoras/metabolismoRESUMO
In Schizosaccharomyces pombe, heterochromatin spread, which is marked by histone 3 lysine 9 methylation (H3K9me), requires the chromodomains (CDs) of the H3K9 methylase Suv39/Clr4 and the HP1/Swi6 protein. It is unclear how the actions of these two H3K9me-recognizing CDs are coordinated. We find that the intrinsic preference of Suv39/Clr4 is to generate dimethylated H3K9 product. The recognition of pre-existing H3K9me marks by the CD of Suv39/Clr4 stimulates overall catalysis, enabling the accumulation of small amounts of trimethylated product in vivo. Coincidentally, the Suv39/Clr4 CD, unlike the HP1/Swi6 CD, has been shown to prefer the trimethyl state over the dimethyl state. We show that this preference enables efficient heterochromatin spread in vivo by reducing competition with HP1 proteins for the more prevalent dimethyl state. Our results reveal a strategy by which "writers" and "readers" of a chromatin mark exploit different methylation states on the same residue in order to facilitate collaboration and avoid competition.
Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Heterocromatina/metabolismo , Histonas/metabolismo , Metiltransferases/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Histona-Lisina N-Metiltransferase , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Estrutura Terciária de Proteína , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismoRESUMO
A hallmark of histone H3 lysine 9 (H3K9)-methylated heterochromatin, conserved from the fission yeast Schizosaccharomyces pombe to humans, is its ability to spread to adjacent genomic regions. Central to heterochromatin spread is heterochromatin protein 1 (HP1), which recognizes H3K9-methylated chromatin, oligomerizes and forms a versatile platform that participates in diverse nuclear functions, ranging from gene silencing to chromosome segregation. How HP1 proteins assemble on methylated nucleosomal templates and how the HP1-nucleosome complex achieves functional versatility remain poorly understood. Here we show that binding of the key S. pombe HP1 protein, Swi6, to methylated nucleosomes drives a switch from an auto-inhibited state to a spreading-competent state. In the auto-inhibited state, a histone-mimic sequence in one Swi6 monomer blocks methyl-mark recognition by the chromodomain of another monomer. Auto-inhibition is relieved by recognition of two template features, the H3K9 methyl mark and nucleosomal DNA. Cryo-electron-microscopy-based reconstruction of the Swi6-nucleosome complex provides the overall architecture of the spreading-competent state in which two unbound chromodomain sticky ends appear exposed. Disruption of the switch between the auto-inhibited and spreading-competent states disrupts heterochromatin assembly and gene silencing in vivo. These findings are reminiscent of other conditionally activated polymerization processes, such as actin nucleation, and open up a new class of regulatory mechanisms that operate on chromatin in vivo.
Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/ultraestrutura , Microscopia Crioeletrônica , Inativação Gênica , Heterocromatina/química , Heterocromatina/ultraestrutura , Histonas/química , Histonas/metabolismo , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Estrutura Terciária de Proteína , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/ultraestrutura , Xenopus laevisRESUMO
HP1 proteins are central to the assembly and spread of heterochromatin containing histone H3K9 methylation. The chromodomain (CD) of HP1 proteins specifically recognizes the methyl mark on H3 peptides, but the same extent of specificity is not observed within chromatin. The chromoshadow domain of HP1 proteins promotes homodimerization, but this alone cannot explain heterochromatin spread. Using the S. pombe HP1 protein, Swi6, we show that recognition of H3K9-methylated chromatin in vitro relies on an interface between two CDs. This interaction causes Swi6 to tetramerize on a nucleosome, generating two vacant CD sticky ends. On nucleosomal arrays, methyl mark recognition is highly sensitive to internucleosomal distance, suggesting that the CD sticky ends bridge nearby methylated nucleosomes. Strengthening the CD-CD interaction enhances silencing and heterochromatin spread in vivo. Our findings suggest that recognition of methylated nucleosomes and HP1 spread on chromatin are structurally coupled and imply that methylation and nucleosome arrangement synergistically regulate HP1 function.
Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Nucleossomos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Histonas/metabolismo , Metilação , Multimerização Proteica , Proteínas de Schizosaccharomyces pombe/fisiologia , Especificidade por SubstratoRESUMO
In eukaryotic cells, structures called heterochromatin play critical roles in nuclear processes ranging from gene repression to chromosome segregation. Biochemical and in vivo studies over the past several decades have implied that the diverse functions of heterochromatin rely on the ability of these structures to spread across large regions of the genome, to compact the underlying DNA, and to recruit different types of activities. Recent observations have suggested that heterochromatin may possess liquid droplet-like properties. Here, we discuss how these observations provide a new perspective on the mechanisms for the assembly, regulation, and functions of heterochromatin.
Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA/genética , Heterocromatina/genética , Proteínas Cromossômicas não Histona/química , DNA/química , Regulação da Expressão Gênica/genética , Heterocromatina/química , Histonas/química , Histonas/genética , Nucleossomos/química , Nucleossomos/genética , Transição de Fase , Schizosaccharomyces/genéticaRESUMO
The ATP-dependent chromatin assembly and remodelling factor (ACF) functions to generate regularly spaced nucleosomes, which are required for heritable gene silencing. The mechanism by which ACF mobilizes nucleosomes remains poorly understood. Here we report a single-molecule FRET study that monitors the remodelling of individual nucleosomes by ACF in real time, revealing previously unknown remodelling intermediates and dynamics. In the presence of ACF and ATP, the nucleosomes exhibit gradual translocation along DNA interrupted by well-defined kinetic pauses that occurred after approximately seven or three to four base pairs of translocation. The binding of ACF, translocation of DNA and exiting of translocation pauses are all ATP-dependent, revealing three distinct functional roles of ATP during remodelling. At equilibrium, a continuously bound ACF complex can move the nucleosome back-and-forth many times before dissociation, indicating that ACF is a highly processive and bidirectional nucleosome translocase.
Assuntos
Montagem e Desmontagem da Cromatina , Modelos Moleculares , Nucleossomos/química , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Cromossômicas não Histona , Transferência Ressonante de Energia de Fluorescência , Humanos , Estrutura Terciária de ProteínaRESUMO
Evenly spaced nucleosomes directly correlate with condensed chromatin and gene silencing. The ATP-dependent chromatin assembly factor (ACF) forms such structures in vitro and is required for silencing in vivo. ACF generates and maintains nucleosome spacing by constantly moving a nucleosome towards the longer flanking DNA faster than the shorter flanking DNA. How the enzyme rapidly moves back and forth between both sides of a nucleosome to accomplish bidirectional movement is unknown. Here we show that nucleosome movement depends cooperatively on two ACF molecules, indicating that ACF functions as a dimer of ATPases. Further, the nucleotide state determines whether the dimer closely engages one or both sides of the nucleosome. Three-dimensional reconstruction by single-particle electron microscopy of the ATPase-nucleosome complex in an activated ATP state reveals a dimer architecture in which the two ATPases face each other. Our results indicate a model in which the two ATPases work in a coordinated manner, taking turns to engage either side of a nucleosome, thereby allowing processive bidirectional movement. This novel dimeric motor mechanism differs from that of dimeric motors such as kinesin and dimeric helicases that processively translocate unidirectionally and reflects the unique challenges faced by motors that move nucleosomes.
Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Nucleossomos/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Proteínas Cromossômicas não Histona , Dimerização , Inativação Gênica/fisiologia , Histonas/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Nucleossomos/química , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/metabolismoRESUMO
Pericentromeric heterochromatin formation is mediated by repressive histone H3 lysine 9 methylation (H3K9Me) and its recognition by HP1 proteins. Intriguingly, in many organisms, RNAi is coupled to this process through poorly understood mechanisms. In Schizosaccharomyces pombe, the H3-K9 methyltransferase Clr4 and the heterochromatin protein 1 (HP1) ortholog Swi6 are critical for RNAi, whereas RNAi stimulates H3K9Me. In addition to the endoribonuclease Dcr1, RNAi in S. pombe requires two interacting protein complexes, the RITS complex, which contains an Argonaute subunit, and the RDRC complex, which contains an RNA-dependent RNA polymerase subunit. We previously identified Ers1 (essential for RNAi-dependent silencing) as an orphan protein that genetically acts in the RNAi pathway. Using recombinant proteins, we show here that Ers1 directly and specifically interacts with HP1/Swi6. Two-hybrid assays indicate that Ers1 also directly interacts with several RNAi factors. Consistent with these interactions, Ers1 associates in vivo with the RITS complex, the RDRC complex, and Dcr1, and it promotes interactions between these factors. Ers1, like Swi6, is also required for RNAi complexes to associate with pericentromeric noncoding RNAs. Overexpression of Ers1 results in a dominant-negative phenotype that can be specifically suppressed by increasing levels of the RDRC subunit Hrr1 or of Dcr1, further supporting a functional role for Ers1 in promoting the assembly of the RNAi machinery. Through the interactions described here, Ers1 may promote RNAi by tethering the corresponding enzyme complexes to HP1-coated chromatin, thereby placing them in proximity to the nascent noncoding RNA substrate.