Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Psychobiol ; 66(7): e22543, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39205500

RESUMO

Early life seizures are associated with a variety of behavioral comorbidities. Among the most prevalent of these are deficits in communication. Auditory communicative behaviors in mice, known as ultrasonic vocalizations (USVs), can be used to assess potential treatments. Agomelatine is a melatonin agonist that effectively reduces behavioral comorbidities of seizures in adults; however, its ability to attenuate seizure-induced communicative deficits in neonates is unknown. To address this, we administered C57 mice either saline or kainic acid (KA) on postnatal day (PD) 10. The mice then received either agomelatine or saline 1-h post-status epilepticus. On PD 11, we assessed the quantity of USVs produced, the duration, peak frequency, fundamental frequency, and amplitude of the vocalizations, as well as the call type utilization. We found that KA increased vocal production and reduced USV variability relative to controls. KA also increased USV duration and amplitude and significantly altered the types of calls produced. Agomelatine did not attenuate any of the deficits. Our study is the first to assess agomelatine's efficacy to correct USVs and thus provides an important point of context to the literature, indicating that despite its high therapeutic efficacy to attenuate other behavioral comorbidities of seizures, agomelatine's ability to correct neonatal communicative deficits is limited.


Assuntos
Acetamidas , Ácido Caínico , Camundongos Endogâmicos C57BL , Vocalização Animal , Animais , Ácido Caínico/farmacologia , Vocalização Animal/efeitos dos fármacos , Acetamidas/farmacologia , Camundongos , Masculino , Feminino , Animais Recém-Nascidos , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Modelos Animais de Doenças , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Naftalenos
2.
Dev Neurosci ; 44(6): 478-486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35512644

RESUMO

Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and a significant contributor to Autism Spectrum Disorder. Individuals with FXS are subject to developing numerous comorbidities, one of the most prevalent being seizures. In the present study, we investigated how seizures affected neonatal communicative behavior in the FXS mouse model. On postnatal day (PD) 7 through 11, we administered 3 flurothyl seizures per day to both Fmr1 knockout and wild-type C57BL/6J male mice. Ultrasonic vocalizations were recorded on PD12. Statistically significant alterations were found in both spectral and temporal measurements across seizure groups. We found that induction of seizures across PD7-11 resulted in an increased fundamental frequency (pitch) of ultrasonic vocalizations produced (p < 0.05), a longer duration of calls (p < 0.05), and a greater cumulative duration of calls (p < 0.05) in both genotypes. Induction of seizures across PD7-11 also resulted in a decreased latency to the first emitted vocalization (p < 0.05) and a decrease in mean power (loudness) for their vocalizations (p < 0.05). Early-life seizures also resulted in an increase in the number of downward and frequency step call types (p < 0.05). There was a significant increase in the number of chevron calls emitted from the Fmr1 knockout mice that received seizures compared to knockout control and wild-type seizure mice (p < 0.05). Overall, this study provides evidence that early-life seizures result in communication impairments and that superimposing seizures in Fmr1 knockout mice does produce an additional deficit in vocalization.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Animais , Masculino , Camundongos , Vocalização Animal , Camundongos Knockout , Camundongos Endogâmicos C57BL , Proteína do X Frágil da Deficiência Intelectual/genética , Convulsões , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Modelos Animais de Doenças
3.
Epilepsy Res ; 206: 107440, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39213710

RESUMO

Seizures induce hippocampal subregion dependent enhancements in microglia/macrophage phagocytosis and cytokine release that may contribute to the development of epilepsy. As a model of hyperactive mTOR induced epilepsy, neuronal subset specific phosphatase and tensin homolog (NS-Pten) knockout (KO) mice exhibit hyperactive mTOR signaling in the hippocampus, seizures that progress with age, and enhanced hippocampal microglia/macrophage activation. However, it is unknown where microglia/macrophages are most active within the hippocampus of NS-Pten KO mice. We quantified the density of IBA1 positive microglia/macrophages in the CA1, CA2/3, and dentate gyrus of NS-Pten KO and wildtype (WT) male and female mice at 4, 10, and 15 weeks of age. NS-Pten KO mice exhibited an overall increase in the number of IBA1 positive microglia/macrophages in each subregion and in the entire hippocampus. After accounting for differences in size, the whole hippocampus of NS-Pten KO mice still exhibited an increased density of IBA1 positive microglia/macrophages. Subregion analyses showed that this increase was restricted to the dentate gyrus of both male and female NS-Pten KO mice and to the CA1 of male NS-Pten KO mice. These data suggest enhanced microglia/macrophage activity may occur in the NS-Pten KO mice in a hippocampal subregion and sex-dependent manner. Future work should seek to determine whether these region-specific increases in microgliosis play a role in the progression of epilepsy in this model.


Assuntos
Hipocampo , Macrófagos , Microglia , PTEN Fosfo-Hidrolase , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Hipocampo/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/metabolismo
4.
Brain Sci ; 14(9)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39335388

RESUMO

BACKGROUND: Fragile X Syndrome (FXS) is the leading monogenetic cause of autism spectrum disorder (ASD) and is associated with seizures. We examined the impact of repeated seizures on the behavioral and molecular changes in male Fmr1 knockout (KO) mice and wild-type (WT) mice. METHODS: Seizures were induced by administering three flurothyl seizures per day across postnatal days (PD) 7-11, for a total of 15 seizures. In adulthood, mice were tested in a battery of behavioral tasks to assess long-term behavioral deficits. RESULTS: The two-hit impact of a Fmr1 knockout and seizures resulted in decreased anxiety-like behavior in the elevated plus maze test and a longer latency to their first nose poke (repetitive behavior). Seizures resulted in decreased activity, decreased repetitive behavior (grooming and rearings), and decreased social behavior, while they also increased habituation to auditory stimuli and increased freezing in delayed fear conditioning in both KO and control mice. KO mice displayed increased repetitive behavior in the open field task (clockwise revolutions) and repeated nose pokes, and decreased anxiety in the open field test. No differences in mTOR signaling were found. CONCLUSIONS: These findings further illuminate the long-term effects of synergistic impact of two hits on the developing brain.

5.
Int J Dev Neurosci ; 84(5): 381-391, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38712612

RESUMO

Neuroinflammation during the neonatal period has been linked to disorders such as autism and epilepsy. In this study, we investigated the early life behavioral consequences of a single injection of lipopolysaccharide (LPS) at postnatal day 10 (PD10) in mice. To assess deficits in communication, we performed the isolation-induced ultrasonic vocalizations (USVs) test at PD12. To determine if early life immune stimulus could alter seizure susceptibility, latency to flurothyl-induced generalized seizures was measured at 4 hours (hrs), 2 days, or 5 days after LPS injections. LPS had a sex-dependent effect on USV number. LPS-treated male mice presented significantly fewer USVs than LPS-treated female mice. However, the number of calls did not significantly differ between control and LPS for either sex. In male mice, we found that downward, short, and composite calls were significantly more prevalent in the LPS treatment group, while upward, chevron, and complex calls were less prevalent than in controls (p < 0.05). Female mice that received LPS presented a significantly higher proportion of short, frequency steps, two-syllable, and composite calls in their repertoire when compared with female control mice (p < 0.05). Seizure latency was not altered by early-life inflammation at any of the time points measured. Our findings suggest that early-life immune stimulation at PD10 disrupts vocal development but does not alter the susceptibility to flurothyl-induced seizures during the neonatal period. Additionally, the effect of inflammation in the disruption of vocalization is sex-dependent.


Assuntos
Animais Recém-Nascidos , Lipopolissacarídeos , Convulsões , Caracteres Sexuais , Vocalização Animal , Animais , Feminino , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia , Camundongos , Masculino , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/toxicidade , Convulsões/induzido quimicamente , Flurotila/toxicidade , Suscetibilidade a Doenças/induzido quimicamente , Convulsivantes/toxicidade , Modelos Animais de Doenças
6.
Genes Brain Behav ; 22(4): e12854, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37376966

RESUMO

The mechanistic target of rapamycin (mTOR) pathway is a signaling system integral to neural growth and migration. In both patients and rodent models, mutations to the phosphatase and tensin homolog gene (PTEN) on chromosome 10 results in hyperactivation of the mTOR pathway, as well as seizures, intellectual disabilities and autistic behaviors. Rapamycin, an inhibitor of mTOR, can reverse the epileptic phenotype of neural subset specific Pten knockout (NS-Pten KO) mice, but its impact on behavior is not known. To determine the behavioral effects of rapamycin, male and female NS-Pten KO and wildtype (WT) mice were assigned as controls or administered 10 mg/kg of rapamycin for 2 weeks followed by behavioral testing. Rapamycin improved social behavior in both genotypes and stereotypic behaviors in NS-Pten KO mice. Rapamycin treatment resulted in a reduction of several measures of activity in the open field test in both genotypes. Rapamycin did not reverse the reduced anxiety behavior in KO mice. These data show the potential clinical use of mTOR inhibitors by showing its administration can reduce the production of autistic-like behaviors in NS-Pten KO mice.


Assuntos
Epilepsia , Sirolimo , Masculino , Feminino , Animais , Camundongos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Epilepsia/genética , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/farmacologia
7.
Neurotoxicol Teratol ; 98: 107180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37160210

RESUMO

Several studies have begun to demonstrate the possible cognitive and physiological benefits of a fortified vitamin D diet. However, the behavioral effects of a high vitamin D fortified diet during adolescence has not been fully explored. In the present study, a 4-week vitamin D fortified diet (20,000 IU/Kg) compared to controls (1500 IU/Kg) was administered during the juvenile (4 weeks old) or early adult period (8 weeks old) in C57BL/6 J mice to investigate the effects of fortification on cognition, behavior, and their bone phenotype. After 4 weeks on the diet, vitamin D-treated and control groups underwent a 4-week battery of behavioral tests while remaining on their respective diets. We found that a fortified diet affected behavior in both an age- and sex-specific manner. When vitamin D was administered to juveniles, both sexes displayed impaired habituation to a loud tone. However, females also presented with impaired prepulse inhibition compared to female controls. In the adult treated group, the fortified diet increased only time spent in the open field and had no effect on anxiety-like behavior in the elevated plus maze. Juvenile mice treated with a high vitamin D fortified diet showed a decrease in the total volume compared to the control group in the proximal metaphysis and midshaft region of their femur. There were no differences in bone measurements for mice treated during adulthood. Overall, our results suggest that the juvenile period is a more sensitive time point to the startle response and bone effects of a diet supplemented with high vitamin D, while adults exhibited alterations in locomotive behavior.


Assuntos
Inibição Pré-Pulso , Vitamina D , Masculino , Feminino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Vitamina D/farmacologia , Reflexo de Sobressalto , Suplementos Nutricionais
8.
Brain Behav ; 13(8): e3142, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37407501

RESUMO

OBJECTIVES: Fragile X syndrome is the main monogenetic cause of intellectual disability and autism. Alterations in the immune system are commonly found in these developmental disorders. We and others have demonstrated that Fmr1 mutant mice present an altered response to immune stimuli. However, whether this altered immune response can influence the Fmr1 mutant behavioral outcomes in response to inflammation has not been fully investigated. MATERIALS AND METHODS: In the current study, we examine the behavioral sickness response of male wildtype and knockout  mice to the innate immune stimulus lipopolysaccharide (LPS) (0.1 mg/kg) to determine if Fmr1 mutants have altered sickness behavior. We used an enzyme-linked immunosorbent assay (ELISA) to measure changes in the cytokine interleukin-6 (IL-6) to determine that inflammation was induced in the mice. Sickness behavior was assessed in a wheel-running paradigm, and a tail suspension test was used to assess the depressive-like phenotype that follows sickness behavior in response to LPS. RESULTS: The ELISA using blood serum confirmed a significant increase in IL-6 in mice that were treated with LPS. Treated Fmr1 mutants exhibited decreased distance traveled in the wheel running after LPS administration, similar to treated controls. Another cohort of animals treated with LPS were tested in the tail suspension test and exhibited no alterations in immobility time in response to LPS. CONCLUSION: Together, our data suggest that Fmr1 mutant mice do not have altered sickness behavior in response to a low dose of LPS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Comportamento de Doença , Animais , Masculino , Camundongos , Comportamento Animal , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Comportamento de Doença/fisiologia , Inflamação/induzido quimicamente , Interleucina-6 , Lipopolissacarídeos/farmacologia , Camundongos Knockout , Atividade Motora/fisiologia
9.
Neuroreport ; 33(11): 476-480, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35775322

RESUMO

Seizures induce brain region-dependent enhancements in microglia/macrophage activation. Neuronal subset-specific phosphatase and tensin homolog (PTEN) knockout (KO) mice display hyperactive mammalian target of rapamycin (mTOR) signaling in the hippocampus, cerebellum, and cortex followed by seizures that increase in severity with age. To determine if KO mice also exhibit alterations in the spatiotemporal activation pattern of microglia, we used flow cytometry to compare the percentage of major histocompatibility complex-II activated microglia/macrophages between KO and wildtype (WT) mice at 5, 10, and 15 weeks of age. At 5 weeks, microglia/macrophage activation was greater in the cortex, P < 0.001, cerebellum, P < 0.001, and hippocampus, P < 0.001, of KO compared to WT mice. At 10 weeks, activation was greatest in the cortex of KO mice, P < 0.001, in the cerebellum of WT mice, P < 0.001, but similar in the hippocampus, P > 0.05. By 15 weeks, activation in the hippocampus was more than 25 times greater in KO mice compared to WT mice, P < 0.001. We show that hyperactive mTOR signaling is associated with an altered spatiotemporal pattern of microglia/macrophage activation in the brain and induces an enhanced neuroimmune response in the hippocampus.


Assuntos
Encéfalo , Macrófagos , Microglia , Neurônios , PTEN Fosfo-Hidrolase , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Neurônios/enzimologia , Neurônios/patologia , PTEN Fosfo-Hidrolase/metabolismo , Convulsões/metabolismo , Convulsões/patologia , Serina-Treonina Quinases TOR/metabolismo
10.
Epilepsy Res ; 181: 106867, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131691

RESUMO

Memory deficits are a prevalent and pervasive comorbidity of epilepsy that significantly decrease an individual's quality of life. Numerous studies have investigated the effects of a seizure on the encoding process of memory; however, few studies have assessed the effect of a seizure on the reconsolidation process of memory. We investigated how a single seizure affects memory reconsolidation in C57BL/6 J adult mice using a predominately hippocampal-dependent paradigm. Mice were presented with a tone (conditioned stimulus), that was proceeded by a mild shock (unconditioned stimulus) occurring 20 s after the tone. Three days later, a flurothyl-induced seizure was administered 1-h before a memory reconsolidation trial. The learned association was assessed by presenting a conditioned stimulus in a new context 24 h or 1-week after memory reconsolidation. We found that there were no differences in memory present between seizure and control mice at the 24 h or 1-week timepoints. Wheel running was also assessed to ensure that the seizure did not alter locomotion and bias the measure in the memory task. No differences in locomotion between seizure and control mice were observed at any timepoint. Altogether, these findings suggest that hippocampal dependent memory reconsolidation is resistant to flurothyl-induced seizure disruption.


Assuntos
Medo , Flurotila , Animais , Flurotila/toxicidade , Hipocampo , Memória , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Qualidade de Vida , Convulsões/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa