Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Neuroinflammation ; 21(1): 42, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311721

RESUMO

Diabetic retinopathy (DR) affects about 200 million people worldwide, causing leakage of blood components into retinal tissues, leading to activation of microglia, the resident phagocytes of the retina, promoting neuronal and vascular damage. The microglial receptor, CX3CR1, binds to fractalkine (FKN), an anti-inflammatory chemokine that is expressed on neuronal membranes (mFKN), and undergoes constitutive cleavage to release a soluble domain (sFKN). Deficiencies in CX3CR1 or FKN showed increased microglial activation, inflammation, vascular damage, and neuronal loss in experimental mouse models. To understand the mechanism that regulates microglia function, recombinant adeno-associated viral vectors (rAAV) expressing mFKN or sFKN were delivered to intact retinas prior to diabetes. High-resolution confocal imaging and mRNA-seq were used to analyze microglia morphology and markers of expression, neuronal and vascular health, and inflammatory mediators. We confirmed that prophylactic intra-vitreal administration of rAAV expressing sFKN (rAAV-sFKN), but not mFKN (rAAV-mFKN), in FKNKO retinas provided vasculo- and neuro-protection, reduced microgliosis, mitigated inflammation, improved overall optic nerve health by regulating microglia-mediated inflammation, and prevented fibrin(ogen) leakage at 4 weeks and 10 weeks of diabetes induction. Moreover, administration of sFKN improved visual acuity. Our results elucidated a novel intervention via sFKN gene therapy that provides an alternative pathway to implement translational and therapeutic approaches, preventing diabetes-associated blindness.


Assuntos
Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1 , Diabetes Mellitus , Animais , Humanos , Camundongos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Diabetes Mellitus/metabolismo , Fatores Imunológicos , Inflamação/metabolismo , Microglia/metabolismo , Isoformas de Proteínas , Retina/metabolismo
2.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339005

RESUMO

Diabetic retinopathy (DR)-associated vision loss is a devastating disease affecting the working-age population. Retinal pathology is due to leakage of serum components into retinal tissues, activation of resident phagocytes (microglia), and vascular and neuronal damage. While short-term interventions are available, they do not revert visual function or halt disease progression. The impact of microglial inflammatory responses on the neurovascular unit remains unknown. In this study, we characterized microglia-vascular interactions in an experimental model of DR. Early diabetes presents activated retinal microglia, vascular permeability, and vascular abnormalities coupled with vascular tortuosity and diminished astrocyte and endothelial cell-associated tight-junction (TJ) and gap-junction (GJ) proteins. Microglia exclusively bind to the neuronal-derived chemokine fractalkine (FKN) via the CX3CR1 receptor to ameliorate microglial activation. Using neuron-specific recombinant adeno-associated viruses (rAAVs), we therapeutically overexpressed soluble (sFKN) or membrane-bound (mFKN) FKN using intra-vitreal delivery at the onset of diabetes. This study highlights the neuroprotective role of rAAV-sFKN, reducing microglial activation, vascular tortuosity, fibrin(ogen) deposition, and astrogliosis and supporting the maintenance of the GJ connexin-43 (Cx43) and TJ zonula occludens-1 (ZO-1) molecules. The results also show that microglia-vascular interactions influence the vascular width upon administration of rAAV-sFKN and rAAV-mFKN. Administration of rAAV-sFKN improved visual function without affecting peripheral immune responses. These findings suggest that overexpression of rAAV-sFKN can mitigate vascular abnormalities by promoting glia-neural signaling. sFKN gene therapy is a promising translational approach to reverse vision loss driven by vascular dysfunction.


Assuntos
Quimiocina CX3CL1 , Retinopatia Diabética , Quimiocina CX3CL1/farmacologia , Quimiocina CX3CL1/uso terapêutico , Diabetes Mellitus/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Microglia/metabolismo , Retina/metabolismo , Transdução de Sinais , Complicações do Diabetes/tratamento farmacológico , Animais , Camundongos
3.
Glia ; 71(2): 245-258, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36106533

RESUMO

Fractalkine (FKN) is a membrane-bound chemokine that can be cleaved by proteases such as ADAM 10, ADAM 17, and cathepsin S to generate soluble fragments. Studies using different forms of the soluble FKN yield conflicting results in vivo. These observations prompted us to investigate the function and pharmacology of two commonly used isoforms of FKN, a human full-length soluble FKN (sFKN), and a human chemokine domain only FKN (cdFKN). Both are prevalent in the literature and are often assumed to be functionally equivalent. We observed that recombinant sFKN and cdFKN exhibit similar potencies in a cell-based cAMP assay, but binding affinity for CX3CR1 was modestly different. There was a 10-fold difference in potency between sFKN and cdFKN when assessing their ability to stimulate ß-arrestin recruitment. Interestingly, high concentrations of FKN, regardless of cleavage variant, were ineffective at reducing pro-inflammatory microglial activation and may induce a pro-inflammatory response. This effect was observed in mouse and rat primary microglial cells as well as microglial cell lines. The inflammatory response was exacerbated in aged microglia, which is known to exhibit age-related inflammatory phenotypes. We observed the same effects in Cx3cr1-/- primary microglia and therefore speculate that an alternative FKN receptor may exist. Collectively, these data provide greater insights into the function and pharmacology of these common FKN reagents, which may clarify conflicting reports and urge greater caution in the selection of FKN peptides for use in in vitro and in vivo studies and the interpretation of results obtained using these differing peptides.


Assuntos
Quimiocina CX3CL1 , Microglia , Camundongos , Ratos , Humanos , Animais , Idoso , Quimiocina CX3CL1/metabolismo , Microglia/metabolismo , Proteólise , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Linhagem Celular
4.
Eur J Neurosci ; 57(10): 1657-1670, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36945758

RESUMO

Reelin, a large extracellular glycoprotein, plays a critical role in prenatal brain development and postnatally in synaptic plasticity, learning and memory. Dysregulation of Reelin signalling has been implicated in several neuropsychiatric disorders including schizophrenia, autism, depression and Alzheimer's disease. Previous studies have demonstrated that Reelin's central fragment, R3456, binds to ApoER2, inducing ApoER2 clustering and subsequent intracellular signalling. We previously reported the development of a novel luciferase complementation assay, which we used to demonstrate that R3456 can lead to ApoER2 receptor dimerization. Using this same assay, we explored various smaller fragments and combinations from R3456, and we identified a construct of repeats 3 and 6 (R36), which could still elicit equivalent receptor dimerization. The purpose of this study was to test R36 for biological effects in vitro and in vivo. We show that R36 was capable of initiating intracellular signalling in primary neuronal cultures. In addition, we demonstrate that a single intracerebroventricular injection of R36 protein into a model of Reelin deficiency, the heterozygous reeler mice, can significantly improve cognition. These data support a role for the new construct R36 to enhance the Reelin pathway, and the future possibility of exploring gene therapy approaches with R36 in diseases characterized by reduced levels of Reelin.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas da Matriz Extracelular , Camundongos , Animais , Proteínas da Matriz Extracelular/genética , Camundongos Mutantes Neurológicos , Moléculas de Adesão Celular Neuronais/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte
5.
J Neuroinflammation ; 20(1): 127, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245027

RESUMO

BACKGROUND: Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. METHODS: Lung infection in mice was induced by instilling Pseudomonas aeruginosa (PA) intratracheally. We determined bacterial colonization in tissue, microvascular leakage, expression of cytokines and leukocyte infiltration into the brain. RESULTS: Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 h and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b + CD45+ cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1ß induced a significant reduction of barrier function coupled with tight junction (TJ) and adherens junction (AJ) diffusion and disorganization. Combined treatment with IL-1ß and TNFα augmented the barrier injury. CONCLUSIONS: Lung bacterial infection is associated with BBB disruption and behavioral changes, which are mediated by systemic cytokine release.


Assuntos
Barreira Hematoencefálica , Pseudomonas aeruginosa , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Pseudomonas aeruginosa/metabolismo , Doenças Neuroinflamatórias , Citocinas/metabolismo , Pulmão , Fator de Necrose Tumoral alfa/metabolismo
6.
Mol Cell Neurosci ; 120: 103724, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367589

RESUMO

We recently generated a novel Angelman syndrome (AS) rat model with a complete Ube3a gene deletion, that recapitulates the loss of UBE3A protein and shows cognitive and EEG deficits. We also recently published the identification of extracellular UBE3A protein within the brain using microdialysis. Here we explored the effects of supplementation of exogenous UBE3A protein to hippocampal slices and intrahippocampal injection of AS rats. We report that the AS rat model demonstrates deficits in hippocampal long-term potentiation (LTP) which can be recovered with the application of exogenous UBE3A protein. Furthermore, injection of recombinant UBE3A protein into the hippocampus of the AS rat can rescue the associative learning and memory deficits seen in the fear conditioning task. These data suggest that extracellular UBE3A protein may play a role in synaptic function, LTP induction and hippocampal-dependent memory formation.


Assuntos
Síndrome de Angelman , Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Hipocampo/metabolismo , Potenciação de Longa Duração , Ratos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
J Neuroinflammation ; 17(1): 242, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799878

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most prevalent movement disorder characterized by up to 80% loss of dopamine (DA) neurons and accumulation of Lewy body deposits composed of α-synuclein (α-syn). Accumulation of α-syn is associated with microglial activation, leading to a pro-inflammatory environment linked with the pathogenesis of PD. Along with microglia, CD4 and CD8 T cells are observed in SNpc. The contribution of T-cells to PD development remains unclear with studies demonstrating that they may mediate neurodegeneration or act in a neuroprotective manner. METHODS: Here, we assessed the contribution of T cells to PD neurodegeneration using an adeno-associated virus (AAV) coding human wild-type α-syn or GFP injected into the substantia nigra pars compacta (SNpc) in T cell deficient (athymic nude) and T cell competent (heterozygous) rats. The rats were behaviorally assessed with cylinder test to test paw bias. Following behavior testing, brains were collected and analyzed for markers of dopamine neuron, microglial activation, T cells, and α-syn expression. RESULTS: Injection of AAV9-α-syn unilaterally into the SN of T cell competent rats resulted in a significant paw bias in comparison to the controls at 60 days post-injection. Conversely, T cell-deficient rats injected with AAV9-α-syn showed no deficit in paw bias. As expected, injected T cell competent rats demonstrated a significant increase in microglial activation (MHCII staining) as well as significant dopaminergic neuron loss. In contrast, the T cell-deficient counterparts did not show a significant increase in microglial activation or significant neuron loss compared to the control animals. We also observed CD4 and CD8 T cells in SNpc following microglial MHCII expression and dopaminergic neuron loss. The time course of T cell entry correlates with upregulation of MHCII and the peak loss of TH+ cells in the SNpc. CONCLUSION: These data demonstrate that T cell infiltration and microglial upregulation of MHCII are involved in α-synuclein-mediated DA neuron loss in this rat model of PD.


Assuntos
Microglia/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Linfócitos T/metabolismo , Regulação para Cima , alfa-Sinucleína/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Microglia/patologia , Neurônios/patologia , Doença de Parkinson/patologia , Ratos , Ratos Nus , Substância Negra/metabolismo , Substância Negra/patologia , Linfócitos T/patologia , alfa-Sinucleína/metabolismo
8.
J Neuroinflammation ; 16(1): 30, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744705

RESUMO

Alzheimer's disease (AD) is a progressive, neurodegenerative disorder, and the most common form of dementia. As the understanding of AD has progressed, it is now believed that AD is an amyloid-initiated tauopathy with neuroinflammation serving as the link between amyloid deposition, tau pathology, and neurodegeneration. As microglia are the main immune effectors in the central nervous system, they have been the focus of attention in studies investigating the neuroinflammatory component of AD. Therefore, recent work has focused on immunomodulators, which can alter microglial activation without suppressing activity, as potential therapeutics for AD. Fractalkine (CX3CL1; FKN), a unique chemokine with a one-to-one relationship with its receptor, signals through its cognate receptor (CX3CR1) to reduce expression of pro-inflammatory genes in activated microglia. Disrupting FKN signaling has opposing effects on the two hallmark pathologies of AD, but over-expressing a soluble FKN has been shown to reduce tau pathology while not altering amyloid pathology. Recently, differential signaling has been reported when comparing two cleavage variants of soluble FKN. These differential effects may explain recent studies reporting seemingly conflicting results regarding the effect of FKN over expression on AD pathologies.


Assuntos
Doença de Alzheimer/patologia , Quimiocina CX3CL1/genética , Inflamação/patologia , Transdução de Sinais , Doença de Alzheimer/genética , Animais , Humanos , Inflamação/genética
9.
J Neurosci ; 35(44): 14842-60, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538654

RESUMO

Tau accumulation remains one of the closest correlates of neuronal loss in Alzheimer's disease. In addition, tau associates with several other neurodegenerative diseases, collectively known as tauopathies, in which clinical phenotypes manifest as cognitive impairment, behavioral disturbances, and motor impairment. Polyamines act as bivalent regulators of cellular function and are involved in numerous biological processes. The regulation of the polyamines system can become dysfunctional during disease states. Arginase 1 (Arg1) and nitric oxide synthases compete for l-arginine to produce either polyamines or nitric oxide, respectively. Herein, we show that overexpression of Arg1 using adeno-associated virus (AAV) in the CNS of rTg4510 tau transgenic mice significantly reduced phospho-tau species and tangle pathology. Sustained Arg1 overexpression decreased several kinases capable of phosphorylating tau, decreased inflammation, and modulated changes in the mammalian target of rapamycin and related proteins, suggesting activation of autophagy. Arg1 overexpression also mitigated hippocampal atrophy in tau transgenic mice. Conversely, conditional deletion of Arg1 in myeloid cells resulted in increased tau accumulation relative to Arg1-sufficient mice after transduction with a recombinant AAV-tau construct. These data suggest that Arg1 and the polyamine pathway may offer novel therapeutic targets for tauopathies.


Assuntos
Arginase/biossíntese , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Tauopatias/enzimologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Arginase/genética , Células HeLa , Hipocampo/enzimologia , Hipocampo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Tauopatias/genética , Proteínas tau/genética
10.
Mol Ther ; 23(1): 17-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25195598

RESUMO

In Parkinson's disease, α-synuclein is known to activate microglia and this activation has been proposed as one of the mechanisms of neurodegeneration. There are several signals produced by neurons that have an anti-inflammatory action on microglia, including CX3CL1 (fractalkine). We have shown that a soluble form of CX3CL1 is required to reduce neuron loss in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice and that fractalkine agonism can reduce neuron loss in a 6-hydroxydopamine lesion model. Here, we show that fractalkine can reduce α-synuclein-mediated neurodegeneration in rats. Rats that received fractalkine showed abrogated loss of tyrosine hydroxylase and Neu-N staining. This was replicated in animals where we expressed fractalkine from astrocytes with the glial fibrillary acid protein (GFAP) promoter. Interestingly, we did not observe a reduction in MHCII expression suggesting that soluble fractalkine is likely altering the microglial state to a more neuroprotective one rather than reducing antigen presentation.


Assuntos
Quimiocina CX3CL1/genética , Terapia Genética/métodos , Doença de Parkinson Secundária/terapia , Transtornos Parkinsonianos/terapia , alfa-Sinucleína/genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Apresentação de Antígeno , Astrócitos/metabolismo , Astrócitos/patologia , Quimiocina CX3CL1/agonistas , Quimiocina CX3CL1/metabolismo , Dependovirus/genética , Regulação da Expressão Gênica , Vetores Genéticos , Proteína Glial Fibrilar Ácida , Antígenos de Histocompatibilidade Classe II/genética , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Regiões Promotoras Genéticas , Ratos , Transdução de Sinais , Substância Negra/metabolismo , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/metabolismo
11.
J Neurosci ; 32(42): 14592-601, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077045

RESUMO

The chemokine CX3CL1/fractalkine is expressed by neurons as a transmembrane-anchored protein that can be cleaved to yield a soluble isoform. However, the roles for these two types of endogenous CX3CL1 in neurodegenerative pathophysiology remain elusive. As such, it has been difficult to delineate the function of the two isoforms of CX3CL1, as both are natively present in the brain. In this study we examined each isoform's ability to regulate neuroinflammation in a mouse model of Parkinson's disease initiated by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We were able to delineate the function of both CX3CL1 isoforms by using adeno-associated virus-mediated gene therapy to selectively express synthetic variants of CX3CL1 that remain either permanently soluble or membrane bound. In the present study we injected each CX3CL1 variant or a GFP-expressing vector directly into the substantia nigra of CX3CL1(-/-) mice. Our results show that only the soluble isoform of CX3CL1 is sufficient for neuroprotection after exposure to MPTP. Specifically, we show that the soluble CX3CL1 isoform reduces impairment of motor coordination, decreases dopaminergic neuron loss, and ameliorates microglial activation and proinflammatory cytokine release resulting from MPTP exposure. Furthermore, we show that the membrane-bound isoform provides no neuroprotective capability to MPTP-induced pathologies, exhibiting similar motor coordination impairment, dopaminergic neuron loss, and inflammatory phenotypes as MPTP-treated CX3CL1(-/-) mice, which received the GFP-expressing control vector. Our results reveal that the neuroprotective capacity of CX3CL1 resides solely upon the soluble isoform in an MPTP-induced model of Parkinson's disease.


Assuntos
Quimiocina CX3CL1/fisiologia , Modelos Animais de Doenças , Doença de Parkinson/metabolismo , Doença de Parkinson/prevenção & controle , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Quimiocina CX3CL1/deficiência , Quimiocina CX3CL1/uso terapêutico , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/etiologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/uso terapêutico , Distribuição Aleatória , Solubilidade
12.
J Neuroinflammation ; 10: 86, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23866683

RESUMO

BACKGROUND: The chemokine (C-C motif) ligand 2 (CCL2) is a monocyte chemoattractant protein that mediates macrophage recruitment and migration during peripheral and central nervous system (CNS) inflammation. METHODS: To determine the impact of CCL2 in inflammation in vivo and to elucidate the CCL2-induced polarization of activated brain microglia, we delivered CCL2 into the brains of wild-type mice via recombinant adeno-associated virus serotype 9 (rAAV-9) driven by the chicken ß-actin promoter. We measured microglial activation using histological and chemical measurement and recruitment of monocytes using histology and flow cytometry. RESULTS: The overexpression of CCL2 in the CNS induced significant activation of brain resident microglia. CD45 and major histocompatibility complex class II immunoreactivity significantly increased at the sites of CCL2 administration. Histological characterization of the microglial phenotype revealed the elevation of "classically activated" microglial markers, such as calgranulin B and IL-1ß, as well as markers associated with "alternative activation" of microglia, including YM1 and arginase 1. The protein expression profile in the hippocampus demonstrated markedly increased levels of IL-6, GM-CSF and eotaxin (CCL-11) in response to CCL2, but no changes in the levels of other cytokines, including TNF-α and IFN-γ. Moreover, real-time PCR analysis confirmed increases in mRNA levels of gene transcripts associated with neuroinflammation following CCL2 overexpression. Finally, we investigated the chemotactic properties of CCL2 in vivo by performing adoptive transfer of bone marrow-derived cells (BMDCs) isolated from donor mice that ubiquitously expressed green fluorescent protein. Flow cytometry and histological analyses indicated that BMDCs extravasated into brain parenchyma and colabeled with microglial markers. CONCLUSION: Taken together, our results suggest that CCL2 strongly activates resident microglia in the brain. Both pro- and anti-inflammatory activation of microglia were prominent, with no bias toward the M1 or M2 phenotype in the activated cells. As expected, CCL2 overexpression actively recruited circulating monocytes into the CNS. Thus, CCL2 expression in mouse brain induces microglial activation and represents an efficient method for recruitment of peripheral macrophages.


Assuntos
Química Encefálica/fisiologia , Quimiocina CCL2/fisiologia , Ativação de Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Transferência Adotiva , Animais , Células da Medula Óssea/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/biossíntese , Citocinas/biossíntese , Dependovirus/genética , Expressão Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Vetores Genéticos , Proteínas de Fluorescência Verde , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
13.
Brain Sci ; 13(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37891846

RESUMO

Reelin is an extracellular matrix glycoprotein involved in neuronal migration during embryonic brain development and synaptic plasticity in the adult brain. The role of Reelin in the developing central nervous system has been extensively characterized. Indeed, a loss of Reelin or a disruption in its signaling cascade leads to neurodevelopmental defects and is associated with ataxia, intellectual disability, autism, and several psychiatric disorders. In the adult brain, Reelin is critically involved in neurogenesis and synaptic plasticity. Reelin's signaling potentiates glutamatergic and GABAergic neurotransmission, induces synaptic maturation, and increases AMPA and NMDA receptor subunits' expression and activity. As a result, there is a growing literature reporting that a loss of function and/or reduction of Reelin is implicated in numerous neurodegenerative diseases. The present review summarizes the current state of the literature regarding the implication of Reelin and Reelin-mediated signaling during aging and neurodegenerative disorders, highlighting Reelin as a possible target in the prevention or treatment of progressive neurodegeneration.

14.
Cell Signal ; 109: 110763, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315752

RESUMO

Reelin and its receptor, ApoER2, play important roles in prenatal brain development and postnatally in synaptic plasticity, learning, and memory. Previous reports suggest that reelin's central fragment binds to ApoER2 and receptor clustering is involved in subsequent intracellular signaling. However, limitations of currently available assays have not established cellular evidence of ApoER2 clustering upon binding of the central reelin fragment. In the present study, we developed a novel, cell-based assay of ApoER2 dimerization using a "split-luciferase" approach. Specifically, cells were co-transfected with one recombinant ApoER2 receptor fused to the N-terminus of luciferase and one ApoER2 receptor fused to the C-terminus of luciferase. Using this assay, we directly observed basal ApoER2 dimerization/clustering in transfected HEK293T cells and, significantly, an increase in ApoER2 clustering in response to that central fragment of reelin. Furthermore, the central fragment of reelin activated intracellular signal transduction of ApoER2, indicated by increased levels of phosphorylation of Dab1, ERK1/2, and Akt in primary cortical neurons. Functionally, we were able to demonstrate that injection of the central fragment of reelin rescued phenotypic deficits observed in the heterozygous reeler mouse. These data are the first to test the hypothesis that the central fragment of reelin contributes to facilitating the reelin intracellular signaling pathway through receptor clustering.


Assuntos
Proteínas da Matriz Extracelular , Serina Endopeptidases , Camundongos , Animais , Humanos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Células HEK293 , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Modelos Animais de Doenças , Luciferases/metabolismo , Cognição , Receptores de LDL/metabolismo
15.
Exp Neurol ; 357: 114170, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863501

RESUMO

Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is characterized by autistic behaviors, childhood seizures, and deficits in learning and memory. FXS has a loss of function of the FMR1 gene that leads to a lack of Fragile X Mental Retardation Protein (FMRP) expression. FMRP is critical for synaptic plasticity, spatial learning, and memory. Reelin is a large extracellular glycoprotein essential for synaptic plasticity and numerous neurodevelopmental processes. Reduction in Reelin signaling is implicated as a contributing factor in disease etiology in several neurological disorders, including schizophrenia, and autism. However, the role of Reelin in FXS is poorly understood. We demonstrate a reduction in Reelin in Fmr1 knock-out (KO) mice, suggesting that a loss of Reelin activity may contribute to FXS. We demonstrate here that Reelin signaling enhancement via a single intracerebroventricular injection of the Reelin central fragment into Fmr1 KO mice can profoundly rescue cognitive deficits in hidden platform water maze and fear conditioning, as well as hyperactivity during the open field. Improvements in behavior were associated with rescued levels of post synaptic marker in Fmr1 KO mice when compared to controls. These data suggest that increasing Reelin signaling in FXS could offer a novel therapeutic for improving cognition in FXS.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Cognição , Suplementos Nutricionais , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos , Camundongos Knockout
16.
Pharmacol Ther ; 231: 107989, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34492237

RESUMO

Neuroinflammation was initially thought of as a consequence of neurodegenerative disease pathology, but more recently it is becoming clear that it plays a significant role in the development and progression of disease. Thus, neuroinflammation is seen as a realistic and valuable therapeutic target for neurodegeneration. Neuroinflammation can be modulated by neuron-glial signaling through various soluble factors, and one such critical modulator is Fractalkine or C-X3-C Motif Chemokine Ligand 1 (CX3CL1). CX3CL1 is produced in neurons and is a unique chemokine that is initially translated as a transmembrane protein but can be proteolytically processed to generate a soluble chemokine. CX3CL1 has been shown to signal through its sole receptor CX3CR1, which is located on microglial cells within the central nervous system (CNS). Although both the membrane bound and soluble forms of CX3CL1 appear to interact with CX3CR1, they do seem to have different signaling capabilities. It is believed that the predominant function of CX3CL1 within the CNS is to reduce the proinflammatory response and many studies have shown neuroprotective effects. However, in some cases CX3CL1 appears to be promoting neurodegeneration. This review focusses on presenting a comprehensive overview of the complex nature of CX3CL1/CX3CR1 signaling in neurodegeneration and how it may present as a therapeutic in some neurodegenerative diseases but not others. The role of CX3CL1/CXCR1 is reviewed in the context of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), ischemia, retinopathies, spinal cord and neuropathic pain, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy.


Assuntos
Quimiocina CX3CL1 , Doenças Neurodegenerativas , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Humanos , Microglia/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Neuroglia/metabolismo
17.
Neurotherapeutics ; 19(4): 1329-1339, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35534672

RESUMO

The rare genetic neurodevelopmental disease Angelman syndrome (AS) is caused by the loss of function of UBE3A, a ubiquitin ligase. The disease results in a lifetime of severe symptoms, including intellectual disability and motor impairments for which there are no effective treatments. One avenue of treatment for AS is the use of gene therapy to reintroduce a functional copy of the UBE3A gene. Our group had previously shown that recombinant adeno-associated virus (rAAV) expressing mouse Ube3a could rescue deficits in a mouse model of AS. Here, we expand on this work and show that this approach could be successfully replicated in a second AS model using the human UBE3A gene. Furthermore, we address the challenge of limited vector distribution in the brain by developing a novel modified form of UBE3A. This modified protein, termed STUB, was designed with a secretion signal and a cell-penetrating peptide. This allowed transduced cells to act as factories for the production of UBE3A protein that could be taken up by neighboring non-transduced cells, thus increasing the number of neurons receiving the therapeutic protein. Combining this construct with intracerebroventricular injections to maximize rAAV distribution within the brain, we demonstrate that this novel approach improves the recovery of behavioral and electrophysiological deficits in the AS rat model. More importantly, a comparison of rAAV-STUB to a rAAV expressing the normal human UBE3A gene showed that STUB was a more effective therapeutic. These data suggest that rAAV-STUB is a new potential approach for the treatment of AS.


Assuntos
Síndrome de Angelman , Peptídeos Penetradores de Células , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Ratos , Síndrome de Angelman/genética , Síndrome de Angelman/terapia , Peptídeos Penetradores de Células/genética , Terapia Genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética
18.
Autism Res ; 14(4): 645-655, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33474832

RESUMO

Disruptions to the maternally inherited allele UBE3A, encoding for an E3 ubiquitin ligase, leads to the manifestation of Angelman Syndrome (AS). While this disorder is rare, the symptoms are severe and lifelong including but not limited to: intractable seizures, abnormal EEG's, ataxic gait, lack of speech, and most notably an abnormally happy demeanor with easily provoked laughter. Currently, little is known about the neurophysiological underpinnings of UBE3A leading to such globally severe phenotypes. Utilizing the newest AS rat model, comprised of a full UBE3A deletion, we aimed to elucidate novel mechanistic actions and potential therapeutic targets. This report demonstrates for the first time that catalytically active UBE3A protein is detectable within cerebrospinal fluid (CSF) of wild type rats but distinctly absent in AS rat CSF. Microdialysis within the rat hippocampus also showed that UBE3A protein is located in the interstitial fluid of wild type rat brains but absent in AS animals. This protein maintains catalytic activity and appears to be regulated in a dynamic activity-dependent manner. LAY SUMMARY: Angelman syndrome (AS) is a rare genetic disorder caused by the loss of the UBE3A gene within the central nervous system. Although we have identified the gene responsible for AS, we still have a long way to go to fully understand its function in vivo. Here we report that UBE3A is present within normal cerebrospinal fluid (CSF) but distinctly absent in AS CSF. Furthermore, we demonstrate that UBE3A is secreted and that this may occur in a dynamic activity-dependent fashion. Extracellular UBE3A maintained its ubiquitinating activity, thus suggesting that UBE3A may have a novel role outside of neurons. Autism Res 2021, 14: 645-655. © 2021 International Society for Autism Research and Wiley Periodicals LLC.


Assuntos
Síndrome de Angelman , Transtorno do Espectro Autista , Síndrome de Angelman/genética , Animais , Espaço Extracelular , Hipocampo , Plasticidade Neuronal , Ratos , Ubiquitina-Proteína Ligases/genética
19.
Front Neurol ; 12: 685802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512509

RESUMO

Widespread transduction of the CNS with a single, non-invasive systemic injection of adeno-associated virus is now possible due to the creation of blood-brain barrier-permeable capsids. However, as these capsids are mutants of AAV9, they do not have specific neuronal tropism. Therefore, it is necessary to use genetic tools to restrict expression of the transgene to neuronal tissues. Here we compare the strength and specificity of two neuron-specific promoters, human synapsin 1 and mouse calmodulin/calcium dependent kinase II, to the ubiquitous CAG promoter. Administration of a high titer of virus is necessary for widespread CNS transduction. We observed the neuron-specific promoters drive comparable overall expression in the brain to the CAG promoter. Furthermore, the neuron-specific promoters confer significantly less transgene expression in peripheral tissues compared with the CAG promoter. Future experiments will utilize these delivery platforms to over-express the Alzheimer-associated pathological proteins amyloid-beta and tau to create mouse models without transgenesis.

20.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33531368

RESUMO

Angelman syndrome (AS) is a neurodevelopmental disorder with unique behavioral phenotypes, seizures, and distinctive electroencephalographic (EEG) patterns. Recent studies identified motor, social communication, and learning and memory deficits in a CRISPR engineered rat model with a complete maternal deletion of the Ube3a gene. It is unknown whether this model recapitulates other aspects of the clinical disorder. We report here the effect of Ube3a maternal deletion in the rat on epileptiform activity, seizure threshold, and quantitative EEG. Using video-synchronized EEG (vEEG) monitoring, we assessed spectral power and epileptiform activity early postnatally through adulthood. While EEG power was similar to wild-type (WT) at 1.5 weeks postnatally, at all other ages analyzed, our findings were similar to the AS phenotype in mice and humans with significantly increased δ power. Analysis of epileptiform activity in juvenile and adult rats showed increased time spent in epileptiform activity in AS compared with WT rats. We evaluated seizure threshold using pentylenetetrazol (PTZ), audiogenic stimulus, and hyperthermia to provoke febrile seizures (FSs). Behavioral seizure scoring following PTZ induction revealed no difference in seizure threshold in AS rats, however behavioral recovery from the PTZ-induced seizure was longer in the adult group with significantly increased hippocampal epileptiform activity during this phase. When exposed to hyperthermia, AS rat pups showed a significantly lower temperature threshold to first seizure than WT. Our findings highlight an age-dependence for the EEG and epileptiform phenotypes in a preclinical model of AS, and support the use of quantitative EEG and increased δ power as a potential biomarker of AS.


Assuntos
Síndrome de Angelman , Síndrome de Angelman/genética , Animais , Eletroencefalografia , Deleção de Genes , Camundongos , Fenótipo , Ratos , Convulsões/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa