Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Big Data ; 10(2): 138-150, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35333606

RESUMO

Complex networks are representations of real-world systems that can be better modeled as multiplex networks, where the same nodes develop multi-type connections. One of the important concerns about these networks is link prediction, which has many applications in social networks and recommender systems. In this article, similarity-based methods such as common neighbors (CNs) are the mainstream. However, in the CN method, the contribution of each CN in the likelihood of new connections is equally taken into account. In this work, we propose a new link prediction method namely Weighted Common Neighbors (WCN), which is based on CNs and various types of Centrality measures (including degree, k-core, closeness, betweenness, Eigenvector, and PageRank) to predict the formation of new links in multiplex networks. So, in this model, each CN has a different impact on the node connection likelihood. Moreover, we investigate the impact of interlayer information on improving the performance of link prediction in the target layer. Using Area under the ROC Curve and precision as evaluation metrics, we perform a comprehensive experimental evaluation of our proposed method on seven real multiplex networks. The results validate the improved performance of our proposed method compared with existing methods, and we show that the performance of proposed methods is significantly improved while using interlayer information in multiplex networks.


Assuntos
Algoritmos , Rede Social
2.
Comput Biol Med ; 137: 104772, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450380

RESUMO

The prediction of interactions in protein networks is very critical in various biological processes. In recent years, scientists have focused on computational approaches to predict the interactions of proteins. In protein-protein interaction (PPI) networks, each protein is accompanied by various features, including amino acid sequence, subcellular location, and protein domains. Embedding-based methods have been widely applied for many network analysis tasks, such as link prediction. The Deepwalk algorithm is one of the most popular graph embedding methods that capture the network structure using pure random walking. Here in this paper, we treat the protein-protein interaction prediction problem as a link prediction in attributed networks, and we use an attributed embedding approach to predict the interactions between proteins in the PPI network. In particular, the present paper seeks to present a modified version of Deepwalk based on feature selection for solving link prediction in the protein-protein interaction, which will benefit both network structure and protein features. More specifically the feature selection step consists of two distinct parts. First, a set of relevant features are selected from the original feature set, such that the dimensionality of features is reduced. Second, in the selected set of features, each feature is assigned with a weight based on its significance and therefore the contribution of each feature is distinguished from others. In this method, the new random walk model for link prediction will be introduced by integrating network structure and protein features, based on the assumption that two nodes on the network will be linked since they are nearby in the network. In order to justify the proposal, the authors carry out many experiments on protein-protein interaction networks for comparison with the state-of-the-art network embedding methods. The experimental results from the graphs indicate that our proposed approach is more capable compared to other link prediction approaches and increases the accuracy of prediction.


Assuntos
Algoritmos , Mapas de Interação de Proteínas , Proteínas
3.
Comput Biol Med ; 138: 104933, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655897

RESUMO

The identification of protein complexes in protein-protein interaction networks is the most fundamental and essential problem for revealing the underlying mechanism of biological processes. However, most existing protein complexes identification methods only consider a network's topology structures, and in doing so, these methods miss the advantage of using nodes' feature information. In protein-protein interaction, both topological structure and node features are essential ingredients for protein complexes. The spectral clustering method utilizes the eigenvalues of the affinity matrix of the data to map to a low-dimensional space. It has attracted much attention in recent years as one of the most efficient algorithms in the subcategory of dimensionality reduction. In this paper, a new version of spectral clustering, named text-associated DeepWalk-Spectral Clustering (TADW-SC), is proposed for attributed networks in which the identified protein complexes have structural cohesiveness and attribute homogeneity. Since the performance of spectral clustering heavily depends on the effectiveness of the affinity matrix, our proposed method will use the text-associated DeepWalk (TADW) to calculate the embedding vectors of proteins. In the following, the affinity matrix will be computed by utilizing the cosine similarity between the two low dimensional vectors, which will be considerable to improve the accuracy of the affinity matrix. Experimental results show that our method performs unexpectedly well in comparison to existing state-of-the-art methods in both real protein network datasets and synthetic networks.


Assuntos
Algoritmos , Mapas de Interação de Proteínas , Atenção , Análise por Conglomerados , Proteínas
4.
Dalton Trans ; 50(43): 15538-15550, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34651632

RESUMO

Two new coordination polymers namely, [(AgCN)4LS]n (1) and [(AgCN)3LN]n (2), were successfully synthesized by the reaction of AgNO3 and cyanide as a co-anion with LS[1,1'-(hexane-1,4-diyl)bis(3-methylimidazoline-2-thione] and LN[1,1,3,3-tetrakis(3,5-dimethyl-1-pyrazole)propane] ligands in order to use them for the preparation of magnetic nanocomposites with MnFe2O4 nanoparticles by an efficient and facile method. They were then well characterized via numerous techniques, including elemental analysis, FT-IR spectroscopy, TGA, PXRD, SEM, TEM, EDX, VSM, BET, ICP, and single-crystal X-ray diffraction. The considered polymers and their magnetic nanocomposites with nearly the same antibacterial activity demonstrated a highly inhibitive effect on the growth of Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacteria. By considering the simple separation and recyclable characters of the magnetic nanocomposites, these materials are suitable to be used in biological applications.


Assuntos
Polímeros
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa