Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119305, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33401178

RESUMO

The interactions of acrylic acid-based super absorbent polymers (SAPs) with water and the hydrogen bonding of water within its three-dimensional network were studied using Raman spectroscopy. The Raman spectra of SAP solutions suggested that both the COO- and CH2 groups of SAPs interact with water. The Raman spectra of pure water and those of SAPs containing approximately 40, 50, and 60% water exhibited a broad band corresponding to the OH-stretching mode of water in the 4000-3000 cm-1 region. This band was separated into three components using a curve-fitting method. The three components at 3200, 3400, and 3600 cm-1 were assigned to the OH-stretching modes of strong hydrogen bonding (SHB), weak hydrogen bonding (WHB), and dangling bond (Dang) species of water, respectively. The fractional areas of the three components were calculated and compared. The changes in the hydrogen bonding of water were compared with those of the water present in SAPs, and their temperature-dependent variations were elucidated. At a water content of approximately 60%, the behavior of the fractional area versus temperature was similar to that of pure water. However, at a water content of approximately 40%, the behavior was significantly different. The fraction of SHB was smaller, and the fraction of WHB was larger than that of pure water. The difference in the CH and COO- peak shifts of SAP, which is a result of the addition of a small percentage of water, was revealed by Raman spectroscopy. The position of the CH2 deformation peak changed linearly. However, the position of the COO- rocking peak did not change significantly up to a water content of 30%, above which it exhibited a rapid shift to lower wavenumbers. This result indicates that the interactions of the CH2 and COO- groups are different.

2.
J Phys Chem B ; 124(4): 668-678, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31895566

RESUMO

Polymer nanoparticles (NPs) can be highly attractive in numerous applications, including biomedicine, where the use of inorganic matter may be detrimental for living tissues. In conventional wet chemistry, polymerization and functionalization of NPs with specific chemical groups involves complex and often numerous reactions. Here, we report on a solvent-free, single-step, low-temperature plasma-based synthesis of carboxylated NPs produced by the polymerization of acrylic acid under the conditions of a glow discharge. In a monomer-deficient regime, the strong fragmentation of monomer molecules by electron impact results in the formation of 15 nm-sized NPs with <1% retention of the carboxyl groups. In an energy-deficient regime, larger 90 nm-sized NPs are formed with better retention of carboxyl groups that reaches 16%. All types of NPs exhibit a glass transition above room temperature, which makes them highly stable in an aqueous environment with no dissolution or swelling. The NPs are also found to degrade thermally when heated above 150 °C, with a decrease in the mean NP size but with retention of the chemical composition. Thus, plasma polymerization proves to be a versatile approach for the production of polymer NPs with a tunable size distribution, chemical composition, and physical properties.


Assuntos
Acrilatos/química , Resinas Acrílicas/química , Nanopartículas/química , Gases em Plasma/química , Resinas Acrílicas/síntese química , Tamanho da Partícula , Polimerização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa