Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metabolomics ; 15(5): 76, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31069551

RESUMO

INTRODUCTION: The estimation of the time since death, or post-mortem interval (PMI), still remains a main conundrum in forensic science. Several approaches have been so far proposed from either a qualitative or a quantitative point of view, but they still lack reliability and robustness. Recently, metabolomics has shown to be a potential tool to investigate the time-related post-mortem metabolite modifications in animal models. OBJECTIVES: Here we propose, for the first time, the use of a 1H NMR metabolomic approach for the estimation of PMI from aqueous humour (AH) in an ovine model. METHODS: AH samples were collected at different times after death (from 118 to 1429 min). 1H NMR experiments were performed and spectral data analysed by multivariate statistical tools. RESULTS: A multivariate calibration model was built to estimate PMI on the basis of the metabolite content of the samples. The model was validated with an independent test set, obtaining a prediction error of 59 min for PMI < 500 min, 104 min for PMI from 500 to 1000 min, and 118 min for PMI > 1000 min. Moreover, the metabolomic approach suggested a picture of the mechanisms underlying the post-mortem biological modifications, highlighting the role played by taurine, choline, and succinate. CONCLUSION: The time-related modifications of the 1H NMR AH metabolomic profile seem to be encouraging in addressing the issue of a reproducible and robust model to be employed for the estimation of the time since death.


Assuntos
Humor Aquoso/metabolismo , Modelos Animais de Doenças , Metabolômica , Mudanças Depois da Morte , Animais , Feminino , Espectroscopia de Prótons por Ressonância Magnética , Ovinos , Fatores de Tempo
2.
J Anthropol Sci ; 96: 189-208, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31782749

RESUMO

Human populations living at high altitude evolved a number of biological adjustments to cope with a challenging environment characterised especially by reduced oxygen availability and limited nutritional resources. This condition may also affect their gut microbiota composition. Here, we explored the impact of exposure to such selective pressures on human gut microbiota by considering different ethnic groups living at variable degrees of altitude: the high-altitude Sherpa and low-altitude Tamang populations from Nepal, the high-altitude Aymara population from Bolivia, as well as a low-altitude cohort of European ancestry, used as control. We thus observed microbial profiles common to the Sherpa and Aymara, but absent in the low-altitude cohorts, which may contribute to the achievement of adaptation to high-altitude lifestyle and nutritional conditions. The collected evidences suggest that microbial signatures associated to these rural populations may enhance metabolic functions able to supply essential compounds useful for the host to cope with high altitude-related physiological changes and energy demand. Therefore, these results add another valuable piece of the puzzle to the understanding of the beneficial effects of symbiosis between microbes and their human host even from an evolutionary perspective.


Assuntos
Adaptação Fisiológica/fisiologia , Dieta/estatística & dados numéricos , Microbioma Gastrointestinal/fisiologia , Estilo de Vida/etnologia , Montanhismo/fisiologia , Adulto , Altitude , Evolução Biológica , Bolívia/etnologia , Feminino , Humanos , Masculino , Nepal/etnologia , Adulto Jovem
3.
Genome Biol Evol ; 10(11): 2919-2930, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30335146

RESUMO

Although Tibetans and Sherpa present several physiological adjustments evolved to cope with selective pressures imposed by the high-altitude environment, especially hypobaric hypoxia, few selective sweeps at a limited number of hypoxia related genes were confirmed by multiple genomic studies. Nevertheless, variants at these loci were found to be associated only with downregulation of the erythropoietic cascade, which represents an indirect aspect of the considered adaptive phenotype. Accordingly, the genetic basis of Tibetan/Sherpa adaptive traits remains to be fully elucidated, in part due to limitations of selection scans implemented so far and mostly relying on the hard sweep model.In order to overcome this issue, we used whole-genome sequence data and several selection statistics as input for gene network analyses aimed at testing for the occurrence of polygenic adaptation in these high-altitude Himalayan populations. Being able to detect also subtle genomic signatures ascribable to weak positive selection at multiple genes of the same functional subnetwork, this approach allowed us to infer adaptive evolution at loci individually showing small effect sizes, but belonging to highly interconnected biological pathways overall involved in angiogenetic processes.Therefore, these findings pinpointed a series of selective events neglected so far, which likely contributed to the augmented tissue blood perfusion observed in Tibetans and Sherpa, thus uncovering the genetic determinants of a key biological mechanism that underlies their adaptation to high altitude.


Assuntos
Adaptação Biológica , Altitude , Genoma Humano , Herança Multifatorial , Seleção Genética , Humanos , Família Multigênica , Nepal , Fenótipo , Tibet
4.
Sci Rep ; 7(1): 15512, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138459

RESUMO

While much research attention has focused on demographic processes that enabled human diffusion on the Tibetan plateau, little is known about more recent colonization of Southern Himalayas. In particular, the history of migrations, admixture and/or isolation of populations speaking Tibeto-Burman languages, which is supposed to be quite complex and to have reshaped patterns of genetic variation on both sides of the Himalayan arc, remains only partially elucidated. We thus described the genomic landscape of previously unsurveyed Tibeto-Burman (i.e. Sherpa and Tamang) and Indo-Aryan communities from remote Nepalese valleys. Exploration of their genomic relationships with South/East Asian populations provided evidence for Tibetan admixture with low-altitude East Asians and for Sherpa isolation. We also showed that the other Southern Himalayan Tibeto-Burmans derived East Asian ancestry not from the Tibetan/Sherpa lineage, but from low-altitude ancestors who migrated from China plausibly across Northern India/Myanmar, having experienced extensive admixture that reshuffled the ancestral Tibeto-Burman gene pool. These findings improved the understanding of the impact of gene flow/drift on the evolution of high-altitude Himalayan peoples and shed light on migration events that drove colonization of the southern Himalayan slopes, as well as on the role played by different Tibeto-Burman groups in such a complex demographic scenario.


Assuntos
DNA/genética , Etnicidade/genética , Fluxo Gênico , Deriva Genética , Migração Humana/tendências , DNA/classificação , Etnicidade/estatística & dados numéricos , Feminino , Variação Genética , Humanos , Índia , Masculino , Mianmar , Nepal , Filogeografia , Tibet
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa