Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 122(12): 2430-2444, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37113056

RESUMO

Mechanisms behind the fluctuations in the ionic current through single acetylcholine receptor (AChR) channels have remained elusive. In a recent study of muscle AChR we showed that mutation of a conserved intramembrane salt bridge in the ß- and δ-subunits markedly increased fluctuations in the open channel current that extended from low to high frequency. Here, we show that extracellular divalent cations reduce the high-frequency fluctuations and increase the low-frequency fluctuations. The low-frequency fluctuations are shown to arise from steps between two current levels, with the ratio of the time at each level changing e-fold for a 70 mV increase in membrane potential, indicating modulation by a charged element within the membrane field. Increasing the charge on the ion selectivity filter biases the ratio of current levels equivalent to a 50 mV increase in membrane potential but does not alter the voltage dependence of the ratio. The magnitudes of the voltage dependence and voltage bias allow estimates of the distance between the ion selectivity filter and the voltage-sensing element. Studies with either calcium or magnesium show that the two divalent cations synergize to increase the low-frequency fluctuations, whereas they act independently to decrease the high-frequency fluctuations, indicating multiple divalent cation binding sites. Molecular dynamics simulations applied to the structure of the Torpedo AChR reveal that mutation of the salt bridge alters the equilibrium positions and dynamics of residues local to the site of the mutation and within the adjacent ion selectivity filter in a calcium-dependent manner. Thus, disruption of a conserved intramembrane salt bridge in the muscle AChR induces fluctuations in open channel current that are sensitive to divalent cation binding at multiple sites and modulated by a charged element within the membrane field.


Assuntos
Cálcio , Receptores Colinérgicos , Receptores Colinérgicos/genética , Cálcio/metabolismo , Cátions Bivalentes , Potenciais da Membrana , Músculos/metabolismo , Cátions
2.
Angew Chem Int Ed Engl ; 60(18): 9789-9802, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32729180

RESUMO

The mainstream approach to antiviral drugs against COVID-19 is to focus on key stages of the SARS-CoV-2 life cycle. The vast majority of candidates under investigation are repurposed from agents of other indications. Understanding protein-inhibitor interactions at the molecular scale will provide crucial insights for drug discovery to stop this pandemic. In this article, we summarize and analyze the most recent structural data on several viral targets in the presence of promising inhibitors for COVID-19 in the context of the perspective of modes of action (MOA) to unravel insightful mechanistic features with atomistic resolution. The targets include spike glycoprotein and various host proteases mediating the entry of the virus into the cells, viral chymotrypsin- and papain-like proteases, and RNA-dependent RNA polymerase. The main purpose of this review is to present detailed MOA analysis to inspire fresh ideas for both de novo drug design and optimization of known scaffolds to combat COVID-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Descoberta de Drogas , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Antivirais/química , COVID-19/metabolismo , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , SARS-CoV-2/fisiologia , Bibliotecas de Moléculas Pequenas/química , Internalização do Vírus/efeitos dos fármacos
3.
J Cell Sci ; 130(8): 1347-1353, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28325758

RESUMO

Microtubules are key cytoskeletal elements of all eukaryotic cells and are assembled of evolutionarily conserved α-tubulin-ß-tubulin heterodimers. Despite their uniform structure, microtubules fulfill a large diversity of functions. A regulatory mechanism to control the specialization of the microtubule cytoskeleton is the 'tubulin code', which is generated by (i) expression of different α- and ß-tubulin isotypes, and by (ii) post-translational modifications of tubulin. In this Cell Science at a Glance article and the accompanying poster, we provide a comprehensive overview of the molecular components of the tubulin code, and discuss the mechanisms by which these components contribute to the generation of functionally specialized microtubules.


Assuntos
Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Animais , Movimento Celular , Humanos , Tubulina (Proteína)/genética
4.
EMBO Rep ; 18(6): 1013-1026, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28483842

RESUMO

Posttranslational modifications of tubulin currently emerge as key regulators of microtubule functions. Polyglutamylation generates a variety of modification patterns that are essential for controlling microtubule functions in different cell types and organelles, and deregulation of these patterns has been linked to ciliopathies, cancer and neurodegeneration. How the different glutamylating enzymes determine precise modification patterns has so far remained elusive. Using computational modelling, molecular dynamics simulations and mutational analyses we now show how the carboxy-terminal tails of tubulin bind into the active sites of glutamylases. Our models suggest that the glutamylation sites on α- and ß-tubulins are determined by the positioning of the tails within the catalytic pocket. Moreover, we found that the binding modes of α- and ß-tubulin tails are highly similar, implying that most enzymes could potentially modify both, α- and ß-tubulin. This supports a model in which the binding of the enzymes to the entire microtubule lattice, but not the specificity of the C-terminal tubulin tails to their active sites, determines the catalytic specificities of glutamylases.


Assuntos
Peptídeo Sintases/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Biocatálise , Análise Mutacional de DNA , Humanos , Microtúbulos/genética , Microtúbulos/fisiologia , Simulação de Dinâmica Molecular , Peptídeo Sintases/genética , Ligação Proteica , Tubulina (Proteína)/genética
5.
Br J Pharmacol ; 181(13): 1973-1992, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38454578

RESUMO

BACKGROUND AND PURPOSE: α4ß2 nicotinic acetylcholine (nACh) receptors assemble in two stoichiometric forms, one of which is potentiated by calcium. The sites of calcium binding that underpin potentiation are not known. EXPERIMENTAL APPROACH: To identify calcium binding sites, we applied cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulations to each stoichiometric form of the α4ß2 nACh receptor in the presence of calcium ions. To test whether the identified calcium sites are linked to potentiation, we generated mutants of anionic residues at the sites, expressed wild type and mutant receptors in clonal mammalian fibroblasts, and recorded ACh-elicited single-channel currents with or without calcium. KEY RESULTS: Both cryo-EM and MD simulations show calcium bound to a site between the extracellular and transmembrane domains of each α4 subunit (ECD-TMD site). Substituting alanine for anionic residues at the ECD-TMD site abolishes stoichiometry-selective calcium potentiation, as monitored by single-channel patch clamp electrophysiology. Additionally, MD simulation reveals calcium association at subunit interfaces within the extracellular domain. Substituting alanine for anionic residues at the ECD sites reduces or abolishes stoichiometry-selective calcium potentiation. CONCLUSIONS AND IMPLICATIONS: Stoichiometry-selective calcium potentiation of the α4ß2 nACh receptor is achieved by calcium association with topographically distinct sites framed by anionic residues within the α4 subunit and between the α4 and ß2 subunits. Stoichiometry-selective calcium potentiation could result from the greater number of calcium sites in the stoichiometric form with three rather than two α4 subunits. The results are relevant to modulation of signalling via α4ß2 nACh receptors in physiological and pathophysiological conditions.


Assuntos
Cálcio , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Cálcio/metabolismo , Humanos , Sítios de Ligação , Animais
6.
Comput Struct Biotechnol J ; 23: 2407-2417, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38882678

RESUMO

The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the recent pandemic, has generated countless new variants with varying fitness. Mutations of the spike glycoprotein play a particularly vital role in shaping its evolutionary trajectory, as they have the capability to alter its infectivity and antigenicity. We present a time-resolved statistical method, Dynamic Expedition of Leading Mutations (deLemus), to analyze the evolutionary dynamics of the SARS-CoV-2 spike glycoprotein. The proposed L -index of the deLemus method is effective in quantifying the mutation strength of each amino acid site and outlining evolutionarily significant sites, allowing the comprehensive characterization of the evolutionary mutation pattern of the spike glycoprotein.

7.
J Biomol Struct Dyn ; : 1-15, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520147

RESUMO

Spike glycoprotein has a significant role in the entry of SARS-CoV-2 to host cells, which makes it a potential drug target. Continued accumulation of non-synonymous mutations in the receptor binding domain of spike protein poses great challenges in identifying antiviral drugs targeting this protein. This study aims to identify potential entry inhibitors of SARS-CoV-2 using virtual screening and molecular dynamics (MD) simulations from three distinct chemical libraries including Pandemic Response Box, Drugbank and DrugCentral, comprising 6971 small molecules. The molecules were screened against a binding pocket identified in the receptor-binding domain (RBD) region of the spike protein which is known as the linoleic acid binding pocket, a highly conserved motif among several SARS-CoV-2 variants. Through virtual screening and binding free energy calculations, we identified four top-scoring compounds, MMV1579787 ([2-Oxo-2-[2-(3-phenoxyphenyl)ethylamino]ethyl]phosphonic acid), Tretinoin, MMV1633963 ((2E,4E)-5-[3-(3,5-dichlorophenoxy)phenyl]penta-2,4-dienoic acid) and Polydatin, which were previously reported to have antibacterial, antifungal or antiviral properties. These molecules showed stable binding on MD simulations over 100 ns and maintained stable interactions with TYR365, PHE338, PHE342, PHE377, TYR369, PHE374 and LEU368 of the spike protein RBD that are found to be conserved among SARS-CoV-2 variants. Our findings were further validated with free energy landscape, principal component analysis and dynamic cross-correlation analysis. Our in silico analysis of binding mode and MD simulation analyses suggest that the identified compounds may impede viral entrance by interacting with the linoleic acid binding site of the spike protein of SARS-CoV-2 regardless of its variants, and they thus demand for further in vitro and in vivo research.Communicated by Ramaswamy H. Sarma.

8.
Biochemistry ; 52(20): 3543-51, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23617789

RESUMO

The mechanism of nucleotide-regulated assembly and disassembly of the prokaryotic cell division protein FtsZ is not yet clearly understood. In this work, we attempt to characterize the functional motions in monomeric FtsZ through molecular dynamics simulations and essential dynamics (ED) analyses and correlate those motions to FtsZ assembly and disassembly. Results suggest that the nucleotide binding subdomain of FtsZ can switch between multitudes of curved conformations in all nucleotide states, but it prefers to be in an assembly competent less curved conformation in the GTP-bound state. Further, the GDP to GTP exchange invokes a subtle conformational change in the nucleotide binding pocket that tends to align the top portion of core helix H7 along the longitudinal axis of the protein. ED analyses suggest that the longitudinal movements of H7 and the adjacent H6-H7 region modulate the motions of C-domain elements coherently. These longitudinal movements of functionally relevant H7, H6-H7, T3, T7, and H10 regions are likely to facilitate the assembly of GTP-FtsZ into straight filament. On the other hand, the observed radial or random movements of FtsZ residues in the GDP state might not allow the monomers to assemble as efficiently as GTP-bound monomers and could produce curved filaments. Our results correlate very well with recent mutagenesis data that inferred FtsZ conformational flexibility and the involvement of the H6-H7 region in assembly.


Assuntos
Proteínas de Bactérias/química , Proteínas do Citoesqueleto/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Sítios de Ligação , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
9.
Biopolymers ; 99(5): 282-91, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23426572

RESUMO

The complex dynamic behavior of microtubules (MTs) is believed to be primarily due to the αß-tubulin dimer architecture and its intrinsic GTPase activity. Hence, a detailed knowledge of the conformational variations of isolated α-GTP-ß-GTP- and α-GTP-ß-GDP-tubulin dimers in solution and their implications to interdimer interactions and stability is directly relevant to understand the MT dynamics. An attempt has been made here by combining molecular dynamics (MD) simulations and protein-protein docking studies that unravels key structural features of tubulin dimer in different nucleotide states and correlates their association to tubulin assembly. Results from simulations suggest that tubulin dimers and oligomers attain curved conformations in both GTP and GDP states. Results also indicate that the tubulin C-terminal domain and the nucleotide state are closely linked. Protein-protein docking in combination with MD simulations suggest that the GTP-tubulin dimers engage in relatively stronger interdimer interactions even though the interdimer interfaces are bent in both GTP and GDP tubulin complexes, providing valuable insights on in vitro finding that GTP-tubulin is a better assembly candidate than GDP-tubulin during the MT nucleation and elongation processes.


Assuntos
Simulação de Dinâmica Molecular , Nucleotídeos/química , Conformação Proteica , Multimerização Proteica , Tubulina (Proteína)/química , Sítios de Ligação , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Cinética , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Nucleotídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tubulina (Proteína)/metabolismo
10.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36535710

RESUMO

RNA 3'-end polyadenylation that marks transcripts for degradation is implicated in general stress response in Escherichia coli Yet, the mechanism and regulation of poly(A) polymerase I (PAPI) in stress response are obscure. We show that pcnB (that encodes PAPI)-null mutation widely stabilises stress response mRNAs and imparts cellular tolerance to multiple stresses, whereas PAPI ectopic expression renders cells stress-sensitive. We demonstrate that there is a substantial loss of PAPI activity on stress exposure that functionally phenocopies pcnB-null mutation stabilising target mRNAs. We identify PAPI tyrosine phosphorylation at the 202 residue (Y202) that is enormously enhanced on stress exposure. This phosphorylation inhibits PAPI polyadenylation activity under stress. Consequentially, PAPI phosphodeficient mutation (tyrosine 202 to phenylalanine, Y202F) fails to stimulate mRNA expression rendering cells stress-sensitive. Bacterial tyrosine kinase Wzc phosphorylates PAPI-Y202 residue, and that wzc-null mutation renders cells stress-sensitive. Accordingly, wzc-null mutation has no effect on stress sensitivity in the presence of pcnB-null or pcnB-Y202F mutation. We also establish that PAPI phosphorylation-dependent stress tolerance mechanism is distinct and operates downstream of the primary stress regulator RpoS.


Assuntos
Proteínas de Escherichia coli , Fosforilação , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , RNA Mensageiro/genética , Tirosina/metabolismo
11.
J Gen Physiol ; 152(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32702089

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR) is among the most abundant types of nAChR in the brain, yet the ability of nerve-released ACh to activate α7 remains enigmatic. In particular, a major population of α7 resides in extra-synaptic regions where the ACh concentration is reduced, owing to dilution and enzymatic hydrolysis, yet ACh shows low potency in activating α7. Using high-resolution single-channel recording techniques, we show that extracellular calcium is a powerful potentiator of α7 activated by low concentrations of ACh. Potentiation manifests as robust increases in the frequency of channel opening and the average duration of the openings. Molecular dynamics simulations reveal that calcium binds to the periphery of the five ligand binding sites and is framed by a pair of anionic residues from the principal and complementary faces of each site. Mutation of residues identified by simulation prevents calcium from potentiating ACh-elicited channel opening. An anionic residue is conserved at each of the identified positions in all vertebrate species of α7. Thus, calcium associates with a novel structural motif on α7 and is an obligate cofactor in regions of limited ACh concentration.


Assuntos
Cálcio , Receptor Nicotínico de Acetilcolina alfa7 , Sítios de Ligação , Cálcio/metabolismo , Simulação de Dinâmica Molecular , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
12.
EMBO Mol Med ; 10(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30446499

RESUMO

The genetic causes of congenital hypothyroidism due to thyroid dysgenesis (TD) remain largely unknown. We identified three novel TUBB1 gene mutations that co-segregated with TD in three distinct families leading to 1.1% of TUBB1 mutations in TD study cohort. TUBB1 (Tubulin, Beta 1 Class VI) encodes for a member of the ß-tubulin protein family. TUBB1 gene is expressed in the developing and adult thyroid in humans and mice. All three TUBB1 mutations lead to non-functional α/ß-tubulin dimers that cannot be incorporated into microtubules. In mice, Tubb1 knock-out disrupted microtubule integrity by preventing ß1-tubulin incorporation and impaired thyroid migration and thyroid hormone secretion. In addition, TUBB1 mutations caused the formation of macroplatelets and hyperaggregation of human platelets after stimulation by low doses of agonists. Our data highlight unexpected roles for ß1-tubulin in thyroid development and in platelet physiology. Finally, these findings expand the spectrum of the rare paediatric diseases related to mutations in tubulin-coding genes and provide new insights into the genetic background and mechanisms involved in congenital hypothyroidism and thyroid dysgenesis.


Assuntos
Plaquetas/citologia , Plaquetas/patologia , Mutação , Agregação Plaquetária , Disgenesia da Tireoide/genética , Tubulina (Proteína)/genética , Animais , Humanos , Camundongos , Camundongos Knockout , Disgenesia da Tireoide/patologia
13.
J Cell Biol ; 216(8): 2443-2461, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687665

RESUMO

Brain development involves extensive migration of neurons. Microtubules (MTs) are key cellular effectors of neuronal displacement that are assembled from α/ß-tubulin heterodimers. Mutation of the α-tubulin isotype TUBA1A is associated with cortical malformations in humans. In this study, we provide detailed in vivo and in vitro analyses of Tuba1a mutants. In mice carrying a Tuba1a missense mutation (S140G), neurons accumulate, and glial cells are dispersed along the rostral migratory stream in postnatal and adult brains. Live imaging of Tuba1a-mutant neurons revealed slowed migration and increased neuronal branching, which correlated with directionality alterations and perturbed nucleus-centrosome (N-C) coupling. Tuba1a mutation led to increased straightness of newly polymerized MTs, and structural modeling data suggest a conformational change in the α/ß-tubulin heterodimer. We show that Tuba8, another α-tubulin isotype previously associated with cortical malformations, has altered function compared with Tuba1a. Our work shows that Tuba1a plays an essential, noncompensated role in neuronal saltatory migration in vivo and highlights the importance of MT flexibility in N-C coupling and neuronal-branching regulation during neuronal migration.


Assuntos
Encéfalo/metabolismo , Movimento Celular , Microtúbulos/metabolismo , Neurogênese , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Encéfalo/patologia , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Camundongos Endogâmicos C3H , Camundongos Mutantes , Microscopia de Fluorescência , Microtúbulos/patologia , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/patologia , Fenótipo , Multimerização Proteica , Estrutura Quaternária de Proteína , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Tempo , Imagem com Lapso de Tempo , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Gravação em Vídeo
14.
Cytoskeleton (Hoboken) ; 73(10): 521-550, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26934450

RESUMO

Across different cell types and tissues, microtubules are assembled from highly conserved dimers of α- and ß-tubulin. Despite their highly similar structures, microtubules have functional heterogeneity, generated either by the expression of different tubulin genes, encoding distinct isotypes, or by posttranslational modifications of tubulin. This genetically encoded and posttranslational generated heterogeneity of tubulin-the "tubulin code"-has the potential to modulate microtubule structure, dynamics, and interactions with associated proteins. The tubulin code is therefore believed to regulate microtubule functions on a cellular and sub-cellular level. This review highlights the importance of the tubulin code for tubulin structure, as well as on microtubule dynamics and functions in neurons. It further summarizes recent developments in the understanding of mutations in tubulin genes, and how they are linked to neurodegenerative and neurodevelopmental disorders. The current advances in the knowledge of the tubulin code on the molecular and the functional level will certainly lead to a better understanding of how complex signaling events control microtubule functions, especially in cells of the nervous system. © 2016 Wiley Periodicals, Inc.


Assuntos
Microtúbulos , Mutação , Doenças do Sistema Nervoso , Neurônios , Tubulina (Proteína) , Animais , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neurônios/metabolismo , Neurônios/patologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
PLoS One ; 7(8): e42351, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879949

RESUMO

The vital role of tubulin dimer in cell division makes it an attractive drug target. Drugs that target tubulin showed significant clinical success in treating various cancers. However, the efficacy of these drugs is attenuated by the emergence of tubulin mutants that are unsusceptible to several classes of tubulin binding drugs. The molecular basis of drug resistance of the tubulin mutants is yet to be unraveled. Here, we employ molecular dynamics simulations, protein-ligand docking, and MMPB(GB)SA analyses to examine the binding of anticancer drugs, taxol and epothilone to the reported point mutants of tubulin--T274I, R282Q, and Q292E. Results suggest that the mutations significantly alter the tubulin structure and dynamics, thereby weaken the interactions and binding of the drugs, primarily by modifying the M loop conformation and enlarging the pocket volume. Interestingly, these mutations also affect the tubulin distal sites that are associated with microtubule building processes.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Multimerização Proteica , Aminoácidos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Epotilonas/química , Epotilonas/metabolismo , Humanos , Mutação/genética , Paclitaxel/química , Paclitaxel/metabolismo , Termodinâmica , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa