Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(12): 11515-11534, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36097122

RESUMO

Long non-coding RNAs (lncRNAs) are 200 nucleotide extended transcripts that do not encode proteins or possess limited coding ability. LncRNAs epigenetically control several biological functions such as gene regulation, transcription, mRNA splicing, protein interaction, and genomic imprinting. Over the years, drastic progress in understanding the role of lncRNAs in diverse biological processes has been made. LncRNAs are reported to show tissue-specific expression patterns suggesting their potential as novel candidate biomarkers for diseases. Among all other non-coding RNAs, lncRNAs are highly expressed within the brain-enriched or brain-specific regions of the neural tissues. They are abundantly expressed in the neocortex and pre-mature frontal regions of the brain. LncRNAs are co-expressed with the protein-coding genes and have a significant role in the evolution of functions of the brain. Any deregulation in the lncRNAs contributes to disruptions in normal brain functions resulting in multiple neurological disorders. Neuropsychiatric disorders such as schizophrenia, bipolar disease, autism spectrum disorders, and anxiety are associated with the abnormal expression and regulation of lncRNAs. This review aims to highlight the understanding of lncRNAs concerning normal brain functions and their deregulation associated with neuropsychiatric disorders. We have also provided a survey on the available computational tools for the prediction of lncRNAs, their protein coding potentials, and sub-cellular locations, along with a section on existing online databases with known lncRNAs, and their interactions with other molecules.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação da Expressão Gênica/genética
2.
Comput Biol Chem ; 112: 108140, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38996755

RESUMO

Long non-coding RNAs (lncRNAs) play crucial roles in the regulation of gene expression and maintenance of genomic integrity through various interactions with DNA, RNA, and proteins. The availability of large-scale sequence data from various high-throughput platforms has opened possibilities to identify, predict, and functionally annotate lncRNAs. As a result, there is a growing demand for an integrative computational framework capable of identifying known lncRNAs, predicting novel lncRNAs, and inferring the downstream regulatory interactions of lncRNAs at the genome-scale. We present ETENLNC (End-To-End-Novel-Long-NonCoding), a user-friendly, integrative, open-source, scalable, and modular computational framework for identifying and analyzing lncRNAs from raw RNA-Seq data. ETENLNC employs six stringent filtration steps to identify novel lncRNAs, performs differential expression analysis of mRNA and lncRNA transcripts, and predicts regulatory interactions between lncRNAs, mRNAs, miRNAs, and proteins. We benchmarked ETENLNC against six existing tools and optimized it for desktop workstations and high-performance computing environments using data from three different species. ETENLNC is freely available on GitHub: https://github.com/EvolOMICS-TU/ETENLNC.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Humanos , Redes Reguladoras de Genes , Software , Biologia Computacional
3.
J Psychiatr Res ; 176: 47-57, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843579

RESUMO

Bipolar Disorder (BPD) and Schizophrenia (SCZ) are complex psychiatric disorders with shared symptomatology and genetic risk factors. Understanding the molecular mechanisms underlying these disorders is crucial for refining diagnostic criteria and guiding targeted treatments. In this study, publicly available RNA-seq data from post-mortem samples of the basal ganglia's striatum were analyzed using an integrative computational approach to identify differentially expressed (DE) transcripts associated with SCZ and BPD. The analysis aimed to reveal both shared and distinct genes and long non-coding RNAs (lncRNAs) and to construct competitive endogenous RNA (ceRNA) networks within the striatum. Furthermore, the functional implications of these identified transcripts are explored, alongside their presence in established databases such as BipEx and SCHEMA. A significant outcome of our analysis was the identification of 21 DEmRNAs and 1 DElncRNA shared between BPD and SCZ across the Caudate, Putamen, and Nucleus Accumbens. Another noteworthy finding was the identification of Hub nodes within the ceRNA networks that were linked to major psychosis. Particularly, MED19, HNRNPC, MAGED4B, KDM5A, GOLGA7, CHASERR, hsa-miR-4778-3p, hsa-miR-4739, and hsa-miR-4685-5p emerged as potential biomarkers. These findings shed light on the common and unique molecular signatures underlying BPD and SCZ, offering significant potential for the advancement of diagnostic and therapeutic strategies tailored to these psychiatric disorders.


Assuntos
Transtorno Bipolar , Redes Reguladoras de Genes , Esquizofrenia , Humanos , Transtorno Bipolar/genética , Esquizofrenia/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma , RNA Endógeno Competitivo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa