Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 6(5): e1000880, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20463810

RESUMO

The HIV-1 envelope glycoprotein (Env) composed of the receptor binding domain gp120 and the fusion protein subunit gp41 catalyzes virus entry and is a major target for therapeutic intervention and for neutralizing antibodies. Env interactions with cellular receptors trigger refolding of gp41, which induces close apposition of viral and cellular membranes leading to membrane fusion. The energy released during refolding is used to overcome the kinetic barrier and drives the fusion reaction. Here, we report the crystal structure at 2 A resolution of the complete extracellular domain of gp41 lacking the fusion peptide and the cystein-linked loop. Both the fusion peptide proximal region (FPPR) and the membrane proximal external region (MPER) form helical extensions from the gp41 six-helical bundle core structure. The lack of regular coiled-coil interactions within FPPR and MPER splay this end of the structure apart while positioning the fusion peptide towards the outside of the six-helical bundle and exposing conserved hydrophobic MPER residues. Unexpectedly, the section of the MPER, which is juxtaposed to the transmembrane region (TMR), bends in a 90 degrees-angle sideward positioning three aromatic side chains per monomer for membrane insertion. We calculate that this structural motif might facilitate the generation of membrane curvature on the viral membrane. The presence of FPPR and MPER increases the melting temperature of gp41 significantly in comparison to the core structure of gp41. Thus, our data indicate that the ordered assembly of FPPR and MPER beyond the core contributes energy to the membrane fusion reaction. Furthermore, we provide the first structural evidence that part of MPER will be membrane inserted within trimeric gp41. We propose that this framework has important implications for membrane bending on the viral membrane, which is required for fusion and could provide a platform for epitope and lipid bilayer recognition for broadly neutralizing gp41 antibodies.


Assuntos
Proteína gp41 do Envelope de HIV/química , HIV-1/química , Proteínas de Fusão de Membrana/química , Proteínas Virais de Fusão/química , Anticorpos Neutralizantes/imunologia , Cristalografia , Epitopos/química , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Proteínas de Fusão de Membrana/imunologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais de Fusão/imunologia
2.
Proc Natl Acad Sci U S A ; 106(50): 21115-20, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19940251

RESUMO

Bacterial DNA replication requires DnaA, an AAA+ ATPase that initiates replication at a specific chromosome region, oriC, and is regulated by species-specific regulators that directly bind DnaA. HobA is a DnaA binding protein, recently identified as an essential regulator of DNA replication in Helicobacter pylori. We report the crystal structure of HobA in complex with domains I and II of DnaA (DnaA(I-II)) from H. pylori, the first structure of DnaA bound to one of its regulators. Biochemical characterization of the complex formed shows that a tetramer of HobA binds four DnaA(I-II) molecules, and that DnaA(I-II) is unable to oligomerize by itself. Mutagenesis and protein-protein interaction studies demonstrate that some of the residues located at the HobA-DnaA(I-II) interface in the structure are necessary for complex formation. Introduction of selected mutations into H. pylori shows that the disruption of the interaction between HobA and DnaA is lethal for the bacteria. Remarkably, the DnaA binding site of HobA is conserved in DiaA from Escherichia coli, suggesting that the structure of the HobA/DnaA complex represents a model for DnaA regulation in other Gram-negative bacteria. Our data, together with those from other studies, indicate that HobA could play a crucial scaffolding role during the initiation of replication in H. pylori by organizing the first step of DnaA oligomerization and attachment to oriC.


Assuntos
Proteínas de Bactérias/química , Replicação do DNA , Proteínas de Ligação a DNA/química , Helicobacter pylori/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA Bacteriano , Proteínas de Ligação a DNA/metabolismo , Helicobacter pylori/genética , Ligação Proteica , Multimerização Proteica , Origem de Replicação
3.
J Biol Chem ; 285(17): 13131-41, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20167596

RESUMO

The DNA mismatch repair protein MutS acts as a molecular switch. It toggles between ADP and ATP states and is regulated by mismatched DNA. This is analogous to G-protein switches and the regulation of their "on" and "off" states by guanine exchange factors. Although GDP release in monomeric GTPases is accelerated by guanine exchange factor-induced removal of magnesium from the catalytic site, we found that release of ADP from MutS is not influenced by the metal ion in this manner. Rather, ADP release is induced by the binding of mismatched DNA at the opposite end of the protein, a long-range allosteric response resembling the mechanism of activation of heterotrimeric GTPases. Magnesium influences switching in MutS by inducing faster and tighter ATP binding, allowing rapid downstream responses. MutS mutants with decreased affinity for the metal ion are impaired in fast switching and in vivo mismatch repair. Thus, the G-proteins and MutS conceptually employ the same efficient use of the high energy cofactor: slow hydrolysis in the absence of a signal and fast conversion to the active state when required.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Magnésio/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Domínio Catalítico/fisiologia , Reparo de Erro de Pareamento de DNA/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Hidrólise , Magnésio/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo
4.
Nucleic Acids Res ; 31(16): 4814-21, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12907723

RESUMO

We have refined a series of isomorphous crystal structures of the Escherichia coli DNA mismatch repair enzyme MutS in complex with G:T, A:A, C:A and G:G mismatches and also with a single unpaired thymidine. In all these structures, the DNA is kinked by approximately 60 degrees upon protein binding. Two residues widely conserved in the MutS family are involved in mismatch recognition. The phenylalanine, Phe 36, is seen stacking on one of the mismatched bases. The same base is also seen forming a hydrogen bond to the glutamate Glu 38. This hydrogen bond involves the N7 if the base stacking on Phe 36 is a purine and the N3 if it is a pyrimidine (thymine). Thus, MutS uses a common binding mode to recognize a wide range of mismatches.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Pareamento Incorreto de Bases , Proteínas de Ligação a DNA/química , DNA/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento , Fenilalanina/química , Fenilalanina/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
5.
Cell Host Microbe ; 7(4): 314-323, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20399176

RESUMO

The restriction factor BST-2/tetherin contains two membrane anchors employed to retain some enveloped viruses, including HIV-1 tethered to the plasma membrane in the absence of virus-encoded antagonists. The 2.77 A crystal structure of the BST-2/tetherin extracellular core presented here reveals a parallel 90 A long disulfide-linked coiled-coil domain, while the complete extracellular domain forms an extended 170 A long rod-like structure based on small-angle X-ray scattering data. Mutagenesis analyses indicate that both the coiled coil and the N-terminal region are required for retention of HIV-1, suggesting that the elongated structure can function as a molecular ruler to bridge long distances. The structure reveals substantial irregularities and instabilities throughout the coiled coil, which contribute to its low stability in the absence of disulfide bonds. We propose that the irregular coiled coil provides conformational flexibility, ensuring that BST-2/tetherin anchoring both in the plasma membrane and in the newly formed virus membrane is maintained during virus budding.


Assuntos
Antígenos CD/química , Membrana Celular/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Glicoproteínas de Membrana/química , Liberação de Vírus , Animais , Antígenos CD/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Proteínas Ligadas por GPI , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo
6.
Mol Microbiol ; 65(4): 995-1005, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17683397

RESUMO

In prokaryotes, DNA replication is initiated by the binding of DnaA to the oriC region of the chromosome to load the primosome machinery and start a new replication round. Several proteins control these events in Escherichia coli to ensure that replication is precisely timed during the cell cycle. Here, we report the crystal structure of HobA (HP1230) at 1.7 A, a recently discovered protein that specifically interacts with DnaA protein from Helicobacter pylori (HpDnaA). We found that the closest structural homologue of HobA is a sugar isomerase (SIS) domain containing protein, the phosphoheptose isomerase from Pseudomonas aeruginosa. Remarkably, SIS proteins share strong sequence homology with DiaA from E. coli; yet, HobA and DiaA share no sequence homology. Thus, by solving the structure of HobA, we unexpectedly discovered that HobA is a H. pylori structural homologue of DiaA. By comparing the structure of HobA to a homology model of DiaA, we identified conserved, surface-accessible residues that could be involved in protein-protein interaction. Finally, we show that HobA specifically interacts with the N-terminal part of HpDnaA. The structural homology between DiaA and HobA strongly supports their involvement in the replication process and these proteins could define a new structural family of replication regulators in bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/química , Helicobacter pylori/química , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Sequência Conservada , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína
7.
EMBO J ; 25(2): 409-19, 2006 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-16407973

RESUMO

MutS plays a critical role in DNA mismatch repair in Escherichia coli by binding to mismatches and initiating repair in an ATP-dependent manner. Mutational analysis of a highly conserved glutamate, Glu38, has revealed its role in mismatch recognition by enabling MutS to discriminate between homoduplex and mismatched DNA. Crystal structures of MutS have shown that Glu38 forms a hydrogen bond to one of the mismatched bases. In this study, we have analyzed the crystal structures, DNA binding and the response to ATP binding of three Glu38 mutants. While confirming the role of the negative charge in initial discrimination, we show that in vivo mismatch repair can proceed even when discrimination is low. We demonstrate that the formation of a hydrogen bond by residue 38 to the mismatched base authorizes repair by inducing intramolecular signaling, which results in the inhibition of rapid hydrolysis of distally bound ATP. This allows formation of the stable MutS-ATP-DNA clamp, a key intermediate in triggering downstream repair events.


Assuntos
Pareamento Incorreto de Bases/genética , Reparo do DNA/fisiologia , Ácido Glutâmico/metabolismo , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases/fisiologia , Calorimetria , Cristalografia , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli , Ácido Glutâmico/química , Ligação de Hidrogênio , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Mutagênese Sítio-Dirigida , Oligonucleotídeos , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa