Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 208(7): 1652-1663, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35315788

RESUMO

Immunodeficient mice reconstituted with immune systems from patients, or personalized immune (PI) mice, are powerful tools for understanding human disease. Compared with immunodeficient mice transplanted with human fetal thymus tissue and fetal liver-derived CD34+ cells administered i.v. (Hu/Hu mice), PI mice, which are transplanted with human fetal thymus and adult bone marrow (aBM) CD34+ cells, demonstrate reduced levels of human reconstitution. We characterized APC and APC progenitor repopulation in human immune system mice and detected significant reductions in blood, bone marrow (BM), and splenic APC populations in PI compared with Hu/Hu mice. APC progenitors and hematopoietic stem cells (HSCs) were less abundant in aBM CD34+ cells compared with fetal liver-derived CD34+ cell preparations, and this reduction in APC progenitors was reflected in the BM of PI compared with Hu/Hu mice 14-20 wk posttransplant. The number of HSCs increased in PI mice compared with the originally infused BM cells and maintained functional repopulation potential, because BM from some PI mice 28 wk posttransplant generated human myeloid and lymphoid cells in secondary recipients. Moreover, long-term PI mouse BM contained functional T cell progenitors, evidenced by thymopoiesis in thymic organ cultures. Injection of aBM cells directly into the BM cavity, transgenic expression of hematopoietic cytokines, and coinfusion of human BM-derived mesenchymal stem cells synergized to enhance long-term B cell and monocyte levels in PI mice. These improvements allow a sustained time frame of 18-22 wk where APCs and T cells are present and greater flexibility for modeling immune disease pathogenesis and immunotherapies in PI mice.


Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Animais , Células da Medula Óssea , Células-Tronco Hematopoéticas , Humanos , Fígado , Camundongos
2.
Clin Immunol ; 240: 109048, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35644520

RESUMO

Interactions between B cells and CD4+ T cells play a central role in the development of Type 1 Diabetes (T1D). Two helper cell subsets, follicular (Tfh) and peripheral (Tph) helper T cells, are increased in patients with T1D but their role in driving B cell autoimmunity is undefined. We used a personalized immune (PI) mouse model to generate human immune systems de novo from hematopoietic stem cells (HSCs) of patients with T1D or from healthy controls (HCs). Both groups developed Tfh and Tph-like cells, and those with T1D-derived immune systems demonstrated increased numbers of Tph-like and Tfh cells compared to HC-derived PI mice. T1D-derived immune systems included increased proportions of unconventional memory CD27-IgD- B cells and reduced proportions of naïve B cells compared to HC PI mice, resembling changes reported for patients with systemic lupus erythematosus. Our findings suggest that T1D HSCs are genetically programmed to produce increased proportions of T cells that promote the development of unconventional, possibly autoreactive memory B cells. PI mice provide an avenue for further understanding of the immune abnormalities that drive autoantibody pathogenesis and T1D.


Assuntos
Subpopulações de Linfócitos B , Diabetes Mellitus Tipo 1 , Animais , Autoimunidade , Subpopulações de Linfócitos B/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Células T Auxiliares Foliculares , Linfócitos T Auxiliares-Indutores
3.
J Autoimmun ; 119: 102612, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33611150

RESUMO

We evaluated the role of the thymus in development of multi-organ autoimmunity in human immune system (HIS) mice. T cells were essential for disease development and the same T cell clones with varying phenotypes infiltrated multiple tissues. De novo-generated hematopoietic stem cell (HSC)-derived T cells were the major disease drivers, though thymocytes pre-existing in grafted human thymi contributed if not first depleted. HIS mice with a native mouse thymus developed disease earlier than thymectomized mice with a thymocyte-depleted human thymus graft. Defective structure in the native mouse thymus was associated with impaired negative selection of thymocytes expressing a transgenic TCR recognizing a self-antigen. Disease developed without direct recognition of antigens on recipient mouse MHC. While human thymus grafts had normal structure and negative selection, failure to tolerize human T cells recognizing mouse antigens presented on HLA molecules may explain eventual disease development. These new insights have implications for human autoimmunity and suggest methods of avoiding autoimmunity in next-generation HIS mice.


Assuntos
Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Suscetibilidade a Doenças/imunologia , Timo/imunologia , Timo/metabolismo , Animais , Antígenos , Doenças Autoimunes/patologia , Biomarcadores , Seleção Clonal Mediada por Antígeno/imunologia , Modelos Animais de Doenças , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Imunofenotipagem , Linfopoese/genética , Linfopoese/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
4.
Xenotransplantation ; 27(1): e12558, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31565822

RESUMO

BACKGROUND: Tolerance-inducing approaches to xenotransplantation would be optimal and may be necessary for long-term survival of transplanted pig organs in human patients. The ideal approach would generate donor-specific unresponsiveness to the pig organ without suppressing the patient's normal immune function. Porcine thymus transplantation has shown efficacy in promoting xenotolerance in humanized mice and large animal models. However, murine studies demonstrate that T cells selected in a swine thymus are positively selected only by swine thymic epithelial cells, and therefore, cells expressing human HLA-restricted TCRs may not be selected efficiently in a transplanted pig thymus. This may lead to suboptimal patient immune function. METHODS: To assess human thymocyte selection in a pig thymus, we used a TCR transgenic humanized mouse model to study positive selection of cells expressing the MART1 TCR, a well-characterized human HLA-A2-restricted TCR, in a grafted pig thymus. RESULTS: Positive selection of T cells expressing the MART1 TCR was inefficient in both a non-selecting human HLA-A2- or swine thymus compared with an HLA-A2+ thymus. Additionally, CD8 MART1 TCRbright T cells were detected in the spleens of mice transplanted with HLA-A2+ thymi but were significantly reduced in the spleens of mice transplanted with swine or HLA-A2- thymi. [Correction added on October 15, 2019, after first online publication: The missing superscript values +, -, and bright have been included in the Results section.] CONCLUSIONS: Positive selection of cells expressing a human-restricted TCR in a transplanted pig thymus is inefficient, suggesting that modifications to improve positive selection of cells expressing human-restricted TCRs in a pig thymus may be necessary to support development of a protective human T-cell pool in future patients.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Timo/fisiologia , Animais , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Antígeno HLA-A2/metabolismo , Humanos , Tolerância Imunológica , Antígeno MART-1/imunologia , Camundongos , Camundongos SCID , Camundongos Transgênicos , Transplante de Órgãos , Suínos , Transplante Heterólogo
5.
Proc Natl Acad Sci U S A ; 114(41): 10954-10959, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28874533

RESUMO

There is an urgent and unmet need for humanized in vivo models of type 1 diabetes to study immunopathogenesis and immunotherapy, and in particular antigen-specific therapy. Transfer of patient blood lymphocytes to immunodeficient mice is associated with xenogeneic graft-versus-host reactivity that complicates assessment of autoimmunity. Improved models could identify which human T cells initiate and participate in beta-cell destruction and help define critical target islet autoantigens. We used humanized mice (hu-mice) containing robust human immune repertoires lacking xenogeneic graft-versus-host reactivity to address this question. Hu-mice constructed by transplantation of HLA-DQ8+ human fetal thymus and CD34+ cells into HLA-DQ8-transgenic immunodeficient mice developed hyperglycemia and diabetes after transfer of autologous HLA-DQ8/insulin-B:9-23 (InsB:9-23)-specific T-cell receptor (TCR)-expressing human CD4+ T cells and immunization with InsB:9-23. Survival of the infused human T cells depended on the preexisting autologous human immune system, and pancreatic infiltration by human CD3+ T cells and insulitis were observed in the diabetic hu-mice, provided their islets were stressed by streptozotocin. This study fits Koch's postulate for pathogenicity, demonstrating a pathogenic role of islet autoreactive CD4+ T-cell responses in type 1 diabetes induction in humans, underscores the role of the target beta-cells in their immunological fate, and demonstrates the capacity to initiate disease with T cells, recognizing the InsB:9-23 epitope in the presence of islet inflammation. This preclinical model has the potential to be used in studies of the pathogenesis of type 1 diabetes and for testing of clinically relevant therapeutic interventions.


Assuntos
Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Antígenos HLA-DQ/imunologia , Células Secretoras de Insulina/imunologia , Insulina/imunologia , Fragmentos de Peptídeos/imunologia , Animais , Autoimunidade , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos
6.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746102

RESUMO

Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdc scid Il2rg tm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1 + CD4 + peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh-like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. T cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies and LIP have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.

7.
J Transl Autoimmun ; 3: 100061, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32875283

RESUMO

During T cell development in mice, thymic negative selection deletes cells with the potential to recognize and react to self-antigens. In human T cell-dependent autoimmune diseases such as Type 1 diabetes, multiple sclerosis, and rheumatoid arthritis, T cells reactive to autoantigens are thought to escape negative selection, traffic to the periphery and attack self-tissues. However, physiological thymic negative selection of autoreactive human T cells has not been previously studied. We now describe a human T-cell receptor-transgenic humanized mouse model that permits the study of autoreactive T-cell development in a human thymus. Our studies demonstrate that thymocytes expressing the autoreactive Clone 5 TCR, which recognizes insulin B:9-23 presented by HLA-DQ8, are efficiently negatively selected at the double and single positive stage in human immune systems derived from HLA-DQ8+ HSCs. In the absence of hematopoietic expression of the HLA restriction element, negative selection of Clone 5 is less efficient and restricted to the single positive stage. To our knowledge, these data provide the first demonstration of negative selection of human T cells recognizing a naturally-expressed tissue-restricted antigen. Intrathymic antigen presenting cells are required to delete less mature thymocytes, while presentation by medullary thymic epithelial cells may be sufficient to delete more mature single positive cells. These observations set the stage for investigation of putative defects in negative selection in human autoimmune diseases.

8.
J Clin Invest ; 129(6): 2446-2462, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30920391

RESUMO

We investigated human T-cell repertoire formation using high throughput TCRß CDR3 sequencing in immunodeficient mice receiving human hematopoietic stem cells (HSCs) and human thymus grafts. Replicate humanized mice generated diverse and highly divergent repertoires. Repertoire narrowing and increased CDR3ß sharing was observed during thymocyte selection. While hydrophobicity analysis implicated self-peptides in positive selection of the overall repertoire, positive selection favored shorter shared sequences that had reduced hydrophobicity at positions 6 and 7 of CDR3ßs, suggesting weaker interactions with self-peptides than unshared sequences, possibly allowing escape from negative selection. Sharing was similar between autologous and allogeneic thymi and occurred between different cell subsets. Shared sequences were enriched for allo-crossreactive CDR3ßs and for Type 1 diabetes-associated autoreactive CDR3ßs. Single-cell TCR-sequencing showed increased sharing of CDR3αs compared to CDR3ßs between mice. Our data collectively implicate preferential positive selection for shared human CDR3ßs that are highly cross-reactive. While previous studies suggested a role for recombination bias in producing "public" sequences in mice, our study is the first to demonstrate a role for thymic selection. Our results implicate positive selection for promiscuous TCRß sequences that likely evade negative selection, due to their low affinity for self-ligands, in the abundance of "public" human TCRß sequences.


Assuntos
Regiões Determinantes de Complementaridade , Receptores de Antígenos de Linfócitos T alfa-beta , Timócitos/imunologia , Timo/imunologia , Animais , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Reações Cruzadas , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Timócitos/citologia , Timo/citologia
9.
Blood Adv ; 1(23): 2007-2018, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29296847

RESUMO

B cells play a major role in antigen presentation and antibody production in the development of autoimmune diseases, and some of these diseases disproportionally occur in females. Moreover, immune responses tend to be stronger in female vs male humans and mice. Because it is challenging to distinguish intrinsic from extrinsic influences on human immune responses, we used a personalized immune (PI) humanized mouse model, in which immune systems were generated de novo from adult human hematopoietic stem cells (HSCs) in immunodeficient mice. We assessed the effect of recipient sex and of donor autoimmune diseases (type 1 diabetes [T1D] and rheumatoid arthritis [RA]) on human B-cell development in PI mice. We observed that human B-cell levels were increased in female recipients regardless of the source of human HSCs or the strain of immunodeficient recipient mice. Moreover, mice injected with T1D- or RA-derived HSCs displayed B-cell abnormalities compared with healthy control HSC-derived mice, including altered B-cell levels, increased proportions of mature B cells and reduced CD19 expression. Our study revealed an HSC-extrinsic effect of recipient sex on human B-cell reconstitution. Moreover, the PI humanized mouse model revealed HSC-intrinsic defects in central B-cell tolerance that recapitulated those in patients with autoimmune diseases. These results demonstrate the utility of humanized mouse models as a tool to better understand human immune cell development and regulation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa