Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388812

RESUMO

BACKGROUND: A filamentous fungus Penicillium rubens is widely recognized for producing industrially important antibiotic, penicillin at industrial scale. OBJECTIVE: To better comprehend, the genetic blueprint of the wild-type P. rubens was isolated from India to identify the genetic/biosynthetic pathways for phenoxymethylpenicillin (penicillin V, PenV) and other secondary metabolites. METHOD: Genomic DNA (gDNA) was isolated, and library was prepared as per Illumina platform. Whole genome sequencing (WGS) was performed according to Illumina NovoSeq platform. Further, SOAPdenovo was used to assemble the short reads validated by Bowtie-2 and SAMtools packages. Glimmer and GeneMark were used to dig out total genes in genome. Functional annotation of predicted proteins was performed by NCBI non-redundant (NR), UniProt, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) databases. Moreover, secretome analysis was performed by SignalP 4.1 and TargetP v1.1 and carbohydrate-active enzymes (CAZymes) and protease families by CAZy database. Comparative genome analysis was performed by Mauve 2.4.0. software to find genomic correlation between P. rubens BIONCL P45 and Penicillium chrysogenum Wisconsin 54-1255; also phylogeny was prepared with known penicillin producing strains by ParSNP tool. RESULTS: Penicillium rubens BIONCL P45 strain was isolated from India and is producing excess PenV. The 31.09 Mb genome was assembled with 95.6% coverage of the reference genome P. chrysogenum Wis 54-1255 with 10687 protein coding genes, 3502 genes had homologs in NR, UniProt, KEGG, and GO databases. Additionally, 358 CAZymes and 911 transporter coding genes were found in genome. Genome contains complete pathways for penicillin, homogentisate pathway of phenyl acetic acid (PAA) catabolism, Andrastin A, Sorbicillin, Roquefortine C, and Meleagrin. Comparative genome analysis of BIONCL P45 and Wis 54-1255 revealed 99.89% coverage with 2952 common KEGG orthologous protein-coding genes. Phylogenetic analysis revealed that BIONCL P45 was clustered with Fleming's original isolate P. rubens IMI 15378. CONCLUSION: This genome can be a helpful resource for further research in developing fermentation processes and strain engineering approaches for high titer penicillin production.

2.
Genet Mol Biol ; 46(1): e20220073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37036389

RESUMO

In the present investigation, prevalence, genetic diversity, and mycotoxin producing potential of Fusarium species associated with maize grain samples were studied from different geographical regions of India. The highest prevalence of Fusarium verticillioides was recorded as 88.52%, followed by F. coffeatum, F. foetens, and F. euwallaceae, 6.55%, 3.27%, and 1.63%, respectively. We isolated 54 strains of F. verticillioides, and their genetic diversity was studied by inter simple sequence repeats (ISSR). The ISSR fingerprints (AG) 8C and (AG) 8G showed 252 and 368 microsatellite sites in the genome of F. verticillioides and resulted in 99-100% repeatability and reproducibility. The Simpson (SID) and Shannon (H) indices (0.78 and 2.36) suggest that F. verticillioides strains exhibit moderate to high diversity. Molecular detection of fumonisin B1 (FB1) biosynthetic genes (FUM1 and FUM13) involved in FB1 production in F. verticillioides was confirmed by polymerase chain reaction (PCR). Furthermore, 91% of the strains were positive for FB1 production, which was affirmed by liquid chromatography with tandem mass spectrometry (LC-MS-MS). In-vitro appurtenance of F. verticillioides spores exhibited a high to moderate effect on the growth and development of the maize. The current finding demonstrated that most F. verticillioides strains showed a wide range of genetic diversity with varied toxigenic and pathogenic potentials. In conclusion, for the first time, F. coffeatum, F. foetens, and F. euwallaceae species were reported from maize grain samples in India. They were positive for FB1 and negatively affecting grain quality, which is a major concern in food safety.

3.
Biotechnol Lett ; 44(10): 1111-1126, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36006577

RESUMO

Mycotoxin contamination of food and feed is a serious food safety issue and causes acute and chronic diseases in humans and livestock. Climatic and agronomic changes helps in the proliferation of fungal growth and mycotoxin production in food commodities. Mycotoxin contamination has attracted global attention due to its wide range of toxicity to humans and animals. However, physical and chemical management approaches in practice are unsafe for well-being due to their health-hazardous nature. Various antibiotics and preservatives are in use to reduce the microbial load and improve the shelf life of food products. In addition, the use of antibiotic growth promotors in livestock production may increase the risk of antimicrobial resistance, which is a global health concern. Due to their many uses, probiotics are helpful microbes that have a significant impact on food and nutrition. Furthermore, the probiotic potential of lactic acid bacteria (LAB) is employed in various food and feed preparations to neutralize mycotoxins, antimicrobial activities, balance the gut microbiome, and various immunomodulatory activities in both humans and livestock. In addition, LAB produces various antimicrobials, flavouring agents, peptides, and proteins linked to various food and health care applications. The LAB-based processes for mycotoxin management are more effective, eco-friendly, and low-cost than physical and chemical approaches. The toxicity, novel preventive measures, binding nature, and molecular mechanisms of mycotoxins' detoxification using LAB have been highlighted in this review.


Assuntos
Fusarium , Lactobacillales , Micotoxinas , Animais , Antibacterianos/metabolismo , Aromatizantes/metabolismo , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Fusarium/metabolismo , Humanos , Lactobacillales/metabolismo , Micotoxinas/análise , Micotoxinas/metabolismo , Micotoxinas/toxicidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-38904895

RESUMO

The rapid rise of antimicrobial resistance (AMR) is a global concern, being triggered by the overuse or misuse of antibiotics in poultry farming sector. We evaluated Lactococcus lactis subsp. lactis BIONCL17752 strain, and characterized its probiotic potential to endure hostile gastrointestinal conditions. Genome sequencing analysis revealed probiotics traits, and gene clusters involved in bacteriocins, lactococcin A, and sactipeptides production. The absence of genes for antibiotic resistance, virulence, and biogenic amine production indicates the potential of probiotic strain. The BIONCL17752 strain was explored for antibiotic-free feed supplement for growth promotor in broiler chicken. The feed supplemented with 4 × 109 CFU/kg of probiotic strain, in combination with various concentrations of fructooligosaccharides (FOS) 1.0, 2.5, and 5.0 kg/tonne in starter, grower, and finisher diets, respectively. A significant improvement of body weight 152 to 171 g/bird (p < 0.05), and a low feed conversion ratio (FCR) of 1.62, was achieved without using synthetic antibiotics for growth promotion. The results of biochemical, hematological, and histological examinations showed normal features, indicating that the treatment had no harmful effects on the bird's health. Reduced levels of cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) in serum are an indication of the health benefits for the treated birds. Microbial community analysis of fecal samples of poultry birds exhibited a higher abundance of Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria. Probiotic treatment resulted in reduced Firmicutes and increased Bacteroidetes (F/B ratio) in the broiler's gut which highlights the benefits of probiotic dietary supplements. Importantly, the probiotic-fed group exhibited a high abundance of carbohydrate-active enzymes (CAZyme) such as glycoside hydrolases (GH), glycoside transferases (GT), and carbohydrate-binding module (CBM) hydrolases which are essential for the degradation of complex sugar molecules. The probiotic potential of the BIONCL17752 strain contributes to broilers' health by positively affecting intestinal microbiota, achieving optimal growth, and lowering mortality, demonstrating the economic benefits of probiotic treatment in organic poultry farming.

5.
Microorganisms ; 11(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37317105

RESUMO

Beta (ß)-lactam antibiotic is an industrially important molecule produced by Penicillium chrysogenum/rubens. Penicillin is a building block for 6-aminopenicillanic acid (6-APA), an important active pharmaceutical intermediate (API) used for semi-synthetic antibiotics biosynthesis. In this investigation, we isolated and identified Penicillium chrysogenum, P. rubens, P. brocae, P. citrinum, Aspergillus fumigatus, A. sydowii, Talaromyces tratensis, Scopulariopsis brevicaulis, P. oxalicum, and P. dipodomyicola using the internal transcribed spacer (ITS) region and the ß-tubulin (BenA) gene for precise species identification from Indian origin. Furthermore, the BenA gene distinguished between complex species of P. chrysogenum and P. rubens to a certain extent which partially failed by the ITS region. In addition, these species were distinguished by metabolic markers profiled by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Secalonic acid, Meleagrin, and Roquefortine C were absent in P. rubens. The crude extract evaluated for PenV production by antibacterial activities by well diffusion method against Staphylococcus aureus NCIM-2079. A high-performance liquid chromatography (HPLC) method was developed for simultaneous detection of 6-APA, phenoxymethyl penicillin (PenV), and phenoxyacetic acid (POA). The pivotal objective was the development of an indigenous strain portfolio for PenV production. Here, a library of 80 strains of P. chrysogenum/rubens was screened for PenV production. Results showed 28 strains capable of producing PenV in a range from 10 to 120 mg/L when 80 strains were screened for its production. In addition, fermentation parameters, precursor concentration, incubation period, inoculum size, pH, and temperature were monitored for the improved PenV production using promising P. rubens strain BIONCL P45. In conclusion, P. chrysogenum/rubens strains can be explored for the industrial-scale PenV production.

6.
ACS Omega ; 8(40): 36628-36635, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37841178

RESUMO

Herein, we disclose the identification of novel metabolites from a potential probiotic strain, Lactococcus lactis subsp. lactis, obtained from traditional dairy milk samples collected in Maharashtra, India (in January 2021). Isolated metabolites include pyrazin-2-carboxamide [1, pyrazinamide, a potential antitubercular drug], 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (2, DDMP), 2,4-di-tert-butylphenol (3), and hexadecanoic acid (4, palmitic acid). The chemical structures of these metabolites were elucidated through extensive 1D NMR (1H and 13C) and 2D NMR (HSQC, HMBC, and NOESY) analyses, high-resolution mass spectrometry, high-performance liquid chromatography, and single-crystal X-ray crystallography. Furthermore, these novel metabolites exhibited potent inhibitory activities against various bacteria, fungi, and yeast strains with minimum inhibitory concentrations ranging between 1.56 and 25 µg/mL, and compounds 1 and 3 were found to be most active against a wide range of microbial strains tested.

7.
Pathogens ; 11(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890054

RESUMO

Fusarium verticillioides is a plant pathogenic fungus affecting a wide range of crops worldwide due to its toxigenic properties. F. verticillioides BIONCL4 strain was isolated from stored maize grain samples in India, and produces high amount of fumonisin B1 (FB1). We report a comparative genomic analysis of F. verticillioides, covering the basic genome information, secretome, and proteins involved in host-pathogen interactions and mycotoxin biosynthesis. Whole-genome sequencing (WGS) was performed using the Illumina platform with an assembly size of 42.91 Mb, GC content of 48.24%, and 98.50% coverage with the reference genome (GCA000149555). It encodes 15,053 proteins, including 2058 secretory proteins, 676 classical secretory proteins, and 569 virulence and pathogenicity-related proteins. There were also 1447 genes linked to carbohydrate active enzymes (CaZymes) and 167 genes related to mycotoxin production. Furthermore, F. verticillioides genome comparison revealed information about the species' evolutionary history. The overall study helps in disease prevention and management of mycotoxins to ensure food safety.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa