Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Med ; 18(1): 185, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32690014

RESUMO

BACKGROUND: There is an urgent need to develop biomarkers that stratify risk of bacterial infection in order to support antimicrobial stewardship in emergency hospital admissions. METHODS: We used computational machine learning to derive a rule-out blood transcriptomic signature of bacterial infection (SeptiCyte™ TRIAGE) from eight published case-control studies. We then validated this signature by itself in independent case-control data from more than 1500 samples in total, and in combination with our previously published signature for viral infections (SeptiCyte™ VIRUS) using pooled data from a further 1088 samples. Finally, we tested the performance of these signatures in a prospective observational cohort of emergency department (ED) patients with fever, and we used the combined SeptiCyte™ signature in a mixture modelling approach to estimate the prevalence of bacterial and viral infections in febrile ED patients without microbiological diagnoses. RESULTS: The combination of SeptiCyte™ TRIAGE with our published signature for viral infections (SeptiCyte™ VIRUS) discriminated bacterial and viral infections in febrile ED patients, with a receiver operating characteristic area under the curve of 0.95 (95% confidence interval 0.90-1), compared to 0.79 (0.68-0.91) for WCC and 0.73 (0.61-0.86) for CRP. At pre-test probabilities 0.35 and 0.72, the combined SeptiCyte™ score achieved a negative predictive value for bacterial infection of 0.97 (0.90-0.99) and 0.86 (0.64-0.96), compared to 0.90 (0.80-0.94) and 0.66 (0.48-0.79) for WCC and 0.88 (0.69-0.95) and 0.60 (0.31-0.72) for CRP. In a mixture modelling approach, the combined SeptiCyte™ score estimated that 24% of febrile ED cases receiving antibacterials without a microbiological diagnosis were due to viral infections. Our analysis also suggested that a proportion of patients with bacterial infection recovered without antibacterials. CONCLUSIONS: Blood transcriptional biomarkers offer exciting opportunities to support precision antibacterial prescribing in ED and improve diagnostic classification of patients without microbiologically confirmed infections.

3.
Crit Care Med ; 48(1): e48-e57, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31714400

RESUMO

OBJECTIVES: Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response to infection, is a leading cause of death and disability among children worldwide. Identifying sepsis in pediatric patients is difficult and can lead to treatment delay. Our objective was to assess the host proteomic response to infection utilizing an aptamer-based multiplexed proteomics approach to identify novel serum protein changes that might help distinguish between pediatric sepsis and infection-negative systemic inflammation and hence can potentially improve sensitivity and specificity of the diagnosis of sepsis over current clinical criteria approaches. DESIGN: Retrospective, observational cohort study. SETTING: PICU and cardiac ICU, Seattle Children's Hospital, Seattle, WA. PATIENTS: A cohort of 40 children with clinically overt sepsis and 30 children immediately postcardiopulmonary bypass surgery (infection-negative systemic inflammation control subjects) was recruited. Children with sepsis had a confirmed or suspected infection, two or more systemic inflammatory response syndrome criteria, and at least cardiovascular and/or pulmonary organ dysfunction. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Serum samples from 35 of the sepsis and 28 of the bypass surgery subjects were available for screening with an aptamer-based proteomic platform that measures 1,305 proteins to search for large-scale serum protein expression pattern changes in sepsis. A total of 111 proteins were significantly differentially expressed between the sepsis and control groups, using the linear models for microarray data (linear modeling) and Boruta (decision trees) R packages, with 55 being previously identified in sepsis patients. Weighted gene correlation network analysis helped identify 76 proteins that correlated highly with clinical sepsis traits, 27 of which had not been previously reported in sepsis. CONCLUSIONS: The serum protein changes identified with the aptamer-based multiplexed proteomics approach used in this study can be useful to distinguish between sepsis and noninfectious systemic inflammation.


Assuntos
Proteínas Sanguíneas/análise , Proteômica/métodos , Sepse/sangue , Sepse/diagnóstico , Aptâmeros de Peptídeos , Criança , Estudos de Coortes , Humanos , Estudos Retrospectivos , Sepse/genética
4.
Am J Respir Crit Care Med ; 198(7): 903-913, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29624409

RESUMO

RATIONALE: A molecular test to distinguish between sepsis and systemic inflammation of noninfectious etiology could potentially have clinical utility. OBJECTIVES: This study evaluated the diagnostic performance of a molecular host response assay (SeptiCyte LAB) designed to distinguish between sepsis and noninfectious systemic inflammation in critically ill adults. METHODS: The study employed a prospective, observational, noninterventional design and recruited a heterogeneous cohort of adult critical care patients from seven sites in the United States (n = 249). An additional group of 198 patients, recruited in the large MARS (Molecular Diagnosis and Risk Stratification of Sepsis) consortium trial in the Netherlands ( www.clinicaltrials.gov identifier NCT01905033), was also tested and analyzed, making a grand total of 447 patients in our study. The performance of SeptiCyte LAB was compared with retrospective physician diagnosis by a panel of three experts. MEASUREMENTS AND MAIN RESULTS: In receiver operating characteristic curve analysis, SeptiCyte LAB had an estimated area under the curve of 0.82-0.89 for discriminating sepsis from noninfectious systemic inflammation. The relative likelihood of sepsis versus noninfectious systemic inflammation was found to increase with increasing test score (range, 0-10). In a forward logistic regression analysis, the diagnostic performance of the assay was improved only marginally when used in combination with other clinical and laboratory variables, including procalcitonin. The performance of the assay was not significantly affected by demographic variables, including age, sex, or race/ethnicity. CONCLUSIONS: SeptiCyte LAB appears to be a promising diagnostic tool to complement physician assessment of infection likelihood in critically ill adult patients with systemic inflammation. Clinical trial registered with www.clinicaltrials.gov (NCT01905033 and NCT02127502).


Assuntos
Cuidados Críticos/métodos , Unidades de Terapia Intensiva , Sepse/diagnóstico , Teste Bactericida do Soro/métodos , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Adulto , Idoso , Estudos de Coortes , Estado Terminal , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Estudos Prospectivos , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade , Sepse/sangue , Síndrome de Resposta Inflamatória Sistêmica/sangue , Estados Unidos
5.
J Clin Med ; 13(20)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39457994

RESUMO

Background/Objective: SeptiCyte RAPID is a transcriptional host response assay that discriminates between sepsis and non-infectious systemic inflammation (SIRS) with a one-hour turnaround time. The overall performance of this test in a cohort of 419 patients has recently been described [Balk et al., J Clin Med 2024, 13, 1194]. In this study, we present the results from a detailed stratification analysis in which SeptiCyte RAPID performance was evaluated in the same cohort across patient groups and subgroups encompassing different demographics, comorbidities and disease, sources and types of pathogens, interventional treatments, and clinically defined phenotypes. The aims were to identify variables that might affect the ability of SeptiCyte RAPID to discriminate between sepsis and SIRS and to determine if any patient subgroups appeared to present a diagnostic challenge for the test. Methods: (1) Subgroup analysis, with subgroups defined by individual demographic or clinical variables, using conventional statistical comparison tests. (2) Principal component analysis and k-means clustering analysis to investigate phenotypic subgroups defined by unique combinations of demographic and clinical variables. Results: No significant differences in SeptiCyte RAPID performance were observed between most groups and subgroups. One notable exception involved an enhanced SeptiCyte RAPID performance for a phenotypic subgroup defined by a combination of clinical variables suggesting a septic shock response. Conclusions: We conclude that for this patient cohort, SeptiCyte RAPID performance was largely unaffected by key variables associated with heterogeneity in patients suspected of sepsis.

6.
J Clin Med ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38592057

RESUMO

(1) Background: SeptiCyte RAPID is a molecular test for discriminating sepsis from non-infectious systemic inflammation, and for estimating sepsis probabilities. The objective of this study was the clinical validation of SeptiCyte RAPID, based on testing retrospectively banked and prospectively collected patient samples. (2) Methods: The cartridge-based SeptiCyte RAPID test accepts a PAXgene blood RNA sample and provides sample-to-answer processing in ~1 h. The test output (SeptiScore, range 0-15) falls into four interpretation bands, with higher scores indicating higher probabilities of sepsis. Retrospective (N = 356) and prospective (N = 63) samples were tested from adult patients in ICU who either had the systemic inflammatory response syndrome (SIRS), or were suspected of having/diagnosed with sepsis. Patients were clinically evaluated by a panel of three expert physicians blinded to the SeptiCyte test results. Results were interpreted under either the Sepsis-2 or Sepsis-3 framework. (3) Results: Under the Sepsis-2 framework, SeptiCyte RAPID performance for the combined retrospective and prospective cohorts had Areas Under the ROC Curve (AUCs) ranging from 0.82 to 0.85, a negative predictive value of 0.91 (sensitivity 0.94) for SeptiScore Band 1 (score range 0.1-5.0; lowest risk of sepsis), and a positive predictive value of 0.81 (specificity 0.90) for SeptiScore Band 4 (score range 7.4-15; highest risk of sepsis). Performance estimates for the prospective cohort ranged from AUC 0.86-0.95. For physician-adjudicated sepsis cases that were blood culture (+) or blood, urine culture (+)(+), 43/48 (90%) of SeptiCyte scores fell in Bands 3 or 4. In multivariable analysis with up to 14 additional clinical variables, SeptiScore was the most important variable for sepsis diagnosis. A comparable performance was obtained for the majority of patients reanalyzed under the Sepsis-3 definition, although a subgroup of 16 patients was identified that was called septic under Sepsis-2 but not under Sepsis-3. (4) Conclusions: This study validates SeptiCyte RAPID for estimating sepsis probability, under both the Sepsis-2 and Sepsis-3 frameworks, for hospitalized patients on their first day of ICU admission.

7.
Viruses ; 15(2)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36851633

RESUMO

SeptiCyte® RAPID is a gene expression assay measuring the relative expression levels of host response genes PLA2G7 and PLAC8, indicative of a dysregulated immune response during sepsis. As severe forms of COVID-19 may be considered viral sepsis, we evaluated SeptiCyte RAPID in a series of 94 patients admitted to Foch Hospital (Suresnes, France) with proven SARS-CoV-2 infection. EDTA blood was collected in the emergency department (ED) in 67 cases, in the intensive care unit (ICU) in 23 cases and in conventional units in 4 cases. SeptiScore (0-15 scale) increased with COVID-19 severity. Patients in ICU had the highest SeptiScores, producing values comparable to 8 patients with culture-confirmed bacterial sepsis. Receiver operating characteristic (ROC) curve analysis had an area under the curve (AUC) of 0.81 for discriminating patients requiring ICU admission from patients who were immediately discharged or from patients requiring hospitalization in conventional units. SeptiScores increased with the extent of the lung injury. For 68 patients, a chest computed tomography (CT) scan was performed within 24 h of COVID-19 diagnosis. SeptiScore >7 suggested lung injury ≥50% (AUC = 0.86). SeptiCyte RAPID was compared to other biomarkers for discriminating Critical + Severe COVID-19 in ICU, versus Moderate + Mild COVID-19 not in ICU. The mean AUC for SeptiCyte RAPID was superior to that of any individual biomarker or combination thereof. In contrast to C-reactive protein (CRP), correlation of SeptiScore with lung injury was not impacted by treatment with anti-inflammatory agents. SeptiCyte RAPID can be a useful tool to identify patients with severe forms of COVID-19 in ED, as well as during follow-up.


Assuntos
COVID-19 , Lesão Pulmonar , Sepse , Humanos , Teste para COVID-19 , COVID-19/diagnóstico , SARS-CoV-2/genética , Sepse/diagnóstico , Área Sob a Curva , Proteínas
8.
Sci Rep ; 13(1): 944, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653401

RESUMO

Tools for the evaluation of COVID-19 severity would help clinicians with triage decisions, especially the decision whether to admit to ICU. The aim of this study was to evaluate SeptiCyte RAPID, a host immune response assay (Immunexpress, Seattle USA) as a triaging tool for COVID-19 patients requiring hospitalization and potentially ICU care. SeptiCyte RAPID employs a host gene expression signature consisting of the ratio of expression levels of two immune related mRNAs, PLA2G7 and PLAC8, measured from whole blood samples. Blood samples from 146 adult SARS-CoV-2 (+) patients were collected within 48 h of hospital admission in PAXgene blood RNA tubes at Hospital del Mar, Barcelona, Spain, between July 28th and December 1st, 2020. Data on demographics, vital signs, clinical chemistry parameters, radiology, interventions, and SeptiCyte RAPID were collected and analyzed with bioinformatics methods. The performance of SeptiCyte RAPID for COVID-19 severity assessment and ICU admission was evaluated, relative to the comparator of retrospective clinical assessment by the Hospital del Mar clinical care team. In conclusion, SeptiCyte RAPID was able to stratify COVID-19 cases according to clinical severity: critical vs. mild (AUC = 0.93, p < 0.0001), critical vs. moderate (AUC = 0.77, p = 0.002), severe vs. mild (AUC = 0.85, p = 0.0003), severe vs. moderate (AUC = 0.63, p = 0.05). This discrimination was significantly better (by AUC or p-value) than could be achieved by CRP, lactate, creatine, IL-6, or D-dimer. Some of the critical or severe cases had "early" blood draws (before ICU admission; n = 33). For these cases, when compared to moderate and mild cases not in ICU (n = 37), SeptiCyte RAPID had AUC = 0.78 (p = 0.00012). In conclusion, SeptiCyte RAPID was able to stratify COVID-19 cases according to clinical severity as defined by the WHO COVID-19 Clinical Management Living Guidance of January 25th, 2021. Measurements taken early (before a patient is considered for ICU admission) suggest that high SeptiScores could aid in predicting the need for later ICU admission.


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Estudos Retrospectivos , Triagem , Espanha , Unidades de Terapia Intensiva , Proteínas
9.
BMC Bioinformatics ; 13: 1, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22214541

RESUMO

BACKGROUND: Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. RESULTS: GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. CONCLUSIONS: GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.


Assuntos
Algoritmos , Biblioteca de Peptídeos , Proteínas/química , Alinhamento de Sequência/métodos , Sequência de Aminoácidos , Ligantes , Peptídeos/química , Linguagens de Programação , Software
11.
J Immunol Methods ; 417: 10-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25497701

RESUMO

Diagnostics using peptide ligands have been available for decades. However, their adoption in diagnostics has been limited, not because of poor sensitivity but in many cases due to diminished specificity. Numerous reports suggest that protein-based rather than peptide-based disease detection is more specific. We examined two different approaches to peptide-based diagnostics using Coccidioides (aka Valley Fever) as the disease model. Although the pathogen was discovered more than a century ago, a highly sensitive diagnostic remains unavailable. We present a case study where two different approaches to diagnosing Valley Fever were used: first, overlapping Valley Fever epitopes representing immunodominant Coccidioides antigens were tiled using a microarray format of presynthesized peptides. Second, a set of random sequence peptides identified using a 10,000 peptide immunosignaturing microarray was compared for sensitivity and specificity. The scientific hypothesis tested was that actual epitope peptides from Coccidioides would provide sufficient sensitivity and specificity as a diagnostic. Results demonstrated that random sequence peptides exhibited higher accuracy when classifying different stages of Valley Fever infection vs. epitope peptides. The epitope peptide array did provide better performance than the existing immunodiffusion array, but when directly compared to the random sequence peptides, reported lower overall accuracy. This study suggests that there are competing aspects of antibody recognition that involve conservation of pathogen sequence and aspects of mimotope recognition and amino acid substitutions. These factors may prove critical when developing the next generation of high-performance immunodiagnostics.


Assuntos
Antígenos de Fungos , Coccidioidomicose/diagnóstico , Ensaios de Triagem em Larga Escala/métodos , Peptídeos , Análise Serial de Proteínas/métodos , Sequência de Aminoácidos , Antígenos de Fungos/imunologia , Coccidioides/imunologia , Epitopos/imunologia , Humanos , Proteoma/imunologia
12.
Clin Vaccine Immunol ; 21(8): 1169-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24964807

RESUMO

Valley fever (VF) is difficult to diagnose, partly because the symptoms of VF are confounded with those of other community-acquired pneumonias. Confirmatory diagnostics detect IgM and IgG antibodies against coccidioidal antigens via immunodiffusion (ID). The false-negative rate can be as high as 50% to 70%, with 5% of symptomatic patients never showing detectable antibody levels. In this study, we tested whether the immunosignature diagnostic can resolve VF false negatives. An immunosignature is the pattern of antibody binding to random-sequence peptides on a peptide microarray. A 10,000-peptide microarray was first used to determine whether valley fever patients can be distinguished from 3 other cohorts with similar infections. After determining the VF-specific peptides, a small 96-peptide diagnostic array was created and tested. The performances of the 10,000-peptide array and the 96-peptide diagnostic array were compared to that of the ID diagnostic standard. The 10,000-peptide microarray classified the VF samples from the other 3 infections with 98% accuracy. It also classified VF false-negative patients with 100% sensitivity in a blinded test set versus 28% sensitivity for ID. The immunosignature microarray has potential for simultaneously distinguishing valley fever patients from those with other fungal or bacterial infections. The same 10,000-peptide array can diagnose VF false-negative patients with 100% sensitivity. The smaller 96-peptide diagnostic array was less specific for diagnosing false negatives. We conclude that the performance of the immunosignature diagnostic exceeds that of the existing standard, and the immunosignature can distinguish related infections and might be used in lieu of existing diagnostics.


Assuntos
Anticorpos Antifúngicos/sangue , Anticorpos Antivirais/sangue , Coccidioides/imunologia , Coccidioidomicose/diagnóstico , Coccidioidomicose/imunologia , Reações Falso-Negativas , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Análise Serial de Proteínas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa