Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 184(11): 3022-3040.e28, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33961781

RESUMO

Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Proteoma/genética , Biologia Computacional/métodos , Células HCT116/metabolismo , Células HEK293/metabolismo , Humanos , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas/fisiologia , Proteoma/metabolismo , Proteômica/métodos
2.
Mol Cell ; 82(11): 2006-2020.e8, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35353987

RESUMO

CK1s are acidophilic serine/threonine kinases with multiple critical cellular functions; their misregulation contributes to cancer, neurodegenerative diseases, and sleep phase disorders. Here, we describe an evolutionarily conserved mechanism of CK1 activity: autophosphorylation of a threonine (T220 in human CK1δ) located at the N terminus of helix αG, proximal to the substrate binding cleft. Crystal structures and molecular dynamics simulations uncovered inherent plasticity in αG that increased upon T220 autophosphorylation. The phosphorylation-induced structural changes significantly altered the conformation of the substrate binding cleft, affecting substrate specificity. In T220 phosphorylated yeast and human CK1s, activity toward many substrates was decreased, but we also identified a high-affinity substrate that was phosphorylated more rapidly, and quantitative phosphoproteomics revealed that disrupting T220 autophosphorylation rewired CK1 signaling in Schizosaccharomyces pombe. T220 is present exclusively in the CK1 family, thus its autophosphorylation may have evolved as a unique regulatory mechanism for this important family.


Assuntos
Proteínas Serina-Treonina Quinases , Caseína Quinase Idelta , Humanos , Fosforilação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transdução de Sinais , Especificidade por Substrato , Treonina
3.
Mol Cell ; 75(3): 620-630.e9, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31279659

RESUMO

mRNA modifications play important roles in regulating gene expression. One of the most abundant mRNA modifications is N6,2-O-dimethyladenosine (m6Am). Here, we demonstrate that m6Am is an evolutionarily conserved mRNA modification mediated by the Phosphorylated CTD Interacting Factor 1 (PCIF1), which catalyzes m6A methylation on 2-O-methylated adenine located at the 5' ends of mRNAs. Furthermore, PCIF1 catalyzes only 5' m6Am methylation of capped mRNAs but not internal m6A methylation in vitro and in vivo. To study the biological role of m6Am, we developed a robust methodology (m6Am-Exo-Seq) to map its transcriptome-wide distribution, which revealed no global crosstalk between m6Am and m6A under assayed conditions, suggesting that m6Am is functionally distinct from m6A. Importantly, we find that m6Am does not alter mRNA transcription or stability but negatively impacts cap-dependent translation of methylated mRNAs. Together, we identify the only human mRNA m6Am methyltransferase and demonstrate a mechanism of gene expression regulation through PCIF1-mediated m6Am mRNA methylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Nucleares/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Transcrição Gênica , Adenosina/genética , Regulação da Expressão Gênica/genética , Humanos , Metilação , Metiltransferases/genética , Fosforilação , Transcriptoma/genética
4.
Anal Chem ; 96(17): 6836-6846, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640495

RESUMO

Isobaric labeling is widely used for unbiased, proteome-wide studies, and it provides several advantages, such as fewer missing values among samples and higher quantitative precision. However, ion interference may lead to compressed or distorted observed ratios due to the coelution and coanalysis of peptides. Here, we introduced a synthetic KnockOut standard (sKO) for evaluating interference in tandem mass tags-based proteomics. sKO is made by mixing TMTpro-labeled tryptic peptides derived from four nonhuman proteins and a whole human proteome as background at different proportions. We showcased the utility of the sKO standard by exploring ion interference at different peptide concentrations (up to a 30-fold change in abundance) and using a variety of mass spectrometer data acquisition strategies. We also demonstrated that the sKO standard could provide valuable information for the rational design of acquisition strategies to achieve optimal data quality and discussed its potential applications for high-throughput proteomics workflows development.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Humanos , Animais , Peptídeos/análise , Peptídeos/química , Proteoma/análise
5.
Proc Natl Acad Sci U S A ; 117(18): 9723-9732, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32332170

RESUMO

Pathway proteomics strategies measure protein expression changes in specific cellular processes that carry out related functions. Using targeted tandem mass tags-based sample multiplexing, hundreds of proteins can be quantified across 10 or more samples simultaneously. To facilitate these highly complex experiments, we introduce a strategy that provides complete control over targeted sample multiplexing experiments, termed Tomahto, and present its implementation on the Orbitrap Tribrid mass spectrometer platform. Importantly, this software monitors via the external desktop computer to the data stream and inserts optimized MS2 and MS3 scans in real time based on an application programming interface with the mass spectrometer. Hundreds of proteins of interest from diverse biological samples can be targeted and accurately quantified in a sensitive and high-throughput fashion. It achieves sensitivity comparable to, if not better than, deep fractionation and requires minimal total sample input (∼10 µg). As a proof-of-principle experiment, we selected four pathways important in metabolism- and inflammation-related processes (260 proteins/520 peptides) and measured their abundance across 90 samples (nine tissues from five old and five young mice) to explore effects of aging. Tissue-specific aging is presented here and we highlight the role of inflammation- and metabolism-related processes in white adipose tissue. We validated our approach through comparison with a global proteome survey across the tissues, work that we also provide as a general resource for the community.


Assuntos
Envelhecimento/genética , Proteoma/genética , Proteômica/métodos , Software , Animais , Ensaios de Triagem em Larga Escala/métodos , Inflamação/genética , Espectrometria de Massas/métodos , Redes e Vias Metabólicas/genética , Camundongos , Especificidade de Órgãos/genética , Peptídeos/genética
6.
Proteomics ; 22(7): e2100317, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918453

RESUMO

Reporter ion interference remains a limitation of isobaric tag-based sample multiplexing. Advances in instrumentation and data acquisition modes, such as the recently developed real-time database search (RTS), can reduce interference. However, interference persists as does the need to benchmark upstream sample preparation and data acquisition strategies. Here, we present an updated Triple yeast KnockOut (TKO) standard as well as corresponding upgrades to the TKO viewing tool (TVT2.5, http://tko.hms.harvard.edu/). Specifically, we expand the TKO standard to incorporate the TMTpro18-plex reagents (TKO18). We also construct a variant thereof which has been digested only with LysC (TKO18L). We compare proteome coverage and interference levels of TKO18 and TKO18L data that are acquired under different data acquisition modes and analyzed using TVT2.5. Our data illustrate that RTS reduces interference while improving proteome coverage and suggest that digesting with LysC alone only modestly reduces interference, albeit at the expense of proteome depth. Collectively, the two new TKO standards coupled with the updated TVT represent a convenient and versatile platform for assessing and developing methods to reduce interference in isobaric tag-based experiments.


Assuntos
Peptídeos , Proteômica , Bases de Dados Factuais , Proteoma , Proteômica/métodos , Saccharomyces cerevisiae/genética
7.
J Proteome Res ; 20(5): 2751-2761, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33797912

RESUMO

Iron is an essential element for life, as it is critical for oxygen transport, cellular respiration, DNA synthesis, and metabolism. Disruptions in iron metabolism have been associated with several complex diseases like diabetes, cancer, infection susceptibility, neurodegeneration, and others; however, the molecular mechanisms linking iron metabolism with these diseases are not fully understood. A commonly used model to study iron deficiency (ID) is yeast, Saccharomyces cerevisiae. Here, we used quantitative (phospho)proteomics to explore the early (4 and 6 h) and late (12 h) response to ID. We showed that metabolic pathways like the Krebs cycle, amino acid, and ergosterol biosynthesis were affected by ID. In addition, during the late response, several proteins related to the ubiquitin-proteasome system and autophagy were upregulated. We also explored the proteomic changes during a recovery period after 12 h of ID. Several proteins recovered their steady-state levels, but some others, such as cytochromes, did not recover during the time tested. Additionally, we showed that autophagy is active during ID, and some of the degraded proteins during ID can be rescued using KO strains for several key autophagy genes. Our results highlight the complex proteome changes occurring during ID and recovery. This study constitutes a valuable data set for researchers interested in iron biology, offering a temporal proteomic data set for ID, as well as a compendium the proteomic changes associated with episodes of iron recovery.


Assuntos
Anemia Ferropriva , Proteínas de Saccharomyces cerevisiae , Humanos , Ferro , Proteômica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
J Proteome Res ; 19(5): 2026-2034, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126768

RESUMO

Multiplexed quantitative analyses of complex proteomes enable deep biological insight. While a multitude of workflows have been developed for multiplexed analyses, the most quantitatively accurate method (SPS-MS3) suffers from long acquisition duty cycles. We built a new, real-time database search (RTS) platform, Orbiter, to combat the SPS-MS3 method's longer duty cycles. RTS with Orbiter eliminates SPS-MS3 scans if no peptide matches to a given spectrum. With Orbiter's online proteomic analytical pipeline, which includes RTS and false discovery rate analysis, it was possible to process a single spectrum database search in less than 10 ms. The result is a fast, functional means to identify peptide spectral matches using Comet, filter these matches, and more efficiently quantify proteins of interest. Importantly, the use of Comet for peptide spectral matching allowed for a fully featured search, including analysis of post-translational modifications, with well-known and extensively validated scoring. These data could then be used to trigger subsequent scans in an adaptive and flexible manner. In this work we tested the utility of this adaptive data acquisition platform to improve the efficiency and accuracy of multiplexed quantitative experiments. We found that RTS enabled a 2-fold increase in mass spectrometric data acquisition efficiency. Orbiter's RTS quantified more than 8000 proteins across 10 proteomes in half the time of an SPS-MS3 analysis (18 h for RTS, 36 h for SPS-MS3).


Assuntos
Proteoma , Proteômica , Bases de Dados Factuais , Espectrometria de Massas , Peptídeos
9.
J Proteome Res ; 18(1): 565-570, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30481031

RESUMO

Protein abundance profiling using isobaric labeling is a well-established quantitative mass spectrometry technique. However, ratio distortion resulting from coisolated and cofragmented ions, commonly referred to as interference, remains a drawback of this strategy. Tribrid mass spectrometers, such as the Orbitrap Fusion and the Orbitrap Fusion Lumos with a triple mass analyzer configuration, facilitate methods (namely, SPS-MS3) that can help alleviate interference. However, few standards are available to measure interference and thereby aid in method development. Here we introduce the TKO6 standard that assesses ion interference and is designed specifically for data acquired at low (unit) mass resolution. We use TKO6 to compare interference in MS2- versus MS3-based quantitation methods, data acquisition methods of different lengths, and ion-trap-based tandem mass tag reporter ion analysis (IT-MS3) with conventional Orbitrap-based analysis (OT-MS3). We show that the TKO6 standard is a valuable tool for assessing quantification accuracy in isobaric-tag-based analyses.


Assuntos
Peptídeos/normas , Proteoma/análise , Proteômica/métodos , Íons , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Coloração e Rotulagem
10.
J Proteome Res ; 18(2): 687-693, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30451507

RESUMO

Multiplexing strategies are at the forefront of mass-spectrometry-based proteomics, with SPS-MS3 methods becoming increasingly commonplace. A known caveat of isobaric multiplexing is interference resulting from coisolated and cofragmented ions that do not originate from the selected precursor of interest. The triple knockout (TKO) standard was designed to benchmark data collection strategies to minimize interference. However, a limitation to its widespread use has been the lack of an automated analysis platform. We present a TKO Visualization Tool (TVT). The TVT viewer allows for automated, web-based, database searching of the TKO standard, returning traditional figures of merit, such as peptide and protein counts, scan-specific ion accumulation times, as well as the TKO-specific metric, the IFI (interference-free index). Moreover, the TVT viewer allows for plotting of two TKO standards to assess protocol optimizations, compare instruments, or measure degradation of instrument performance over time. We showcase the TVT viewer by probing the selection of (1) stationary phase resin, (2) MS2 isolation window width, and (3) number of synchronous precursor selection (SPS) ions for SPS-MS3 analysis. Using the TVT viewer will allow the proteomics community to search and compare TKO results to optimize user-specific data collection workflows.


Assuntos
Internet , Proteômica/métodos , Ferramenta de Busca , Automação , Confiabilidade dos Dados , Proteoma/análise , Proteômica/normas , Interface Usuário-Computador
11.
J Proteome Res ; 18(3): 1299-1306, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30658528

RESUMO

Quantitative proteomics employing isobaric reagents has been established as a powerful tool for biological discovery. Current workflows often utilize a dedicated quantitative spectrum to improve quantitative accuracy and precision. A consequence of this approach is a dramatic reduction in the spectral acquisition rate, which necessitates the use of additional instrument time to achieve comprehensive proteomic depth. This work assesses the performance and benefits of online and real-time spectral identification in quantitative multiplexed workflows. A Real-Time Search (RTS) algorithm was implemented to identify fragment spectra within milliseconds as they are acquired using a probabilistic score and to trigger quantitative spectra only upon confident peptide identification. The RTS-MS3 was benchmarked against standard workflows using a complex two-proteome model of interference and a targeted 10-plex comparison of kinase abundance profiles. Applying the RTS-MS3 method provided the comprehensive characterization of a 10-plex proteome in 50% less acquisition time. These data indicate that the RTS-MS3 approach provides dramatic performance improvements for quantitative multiplexed experiments.


Assuntos
Peptídeos/isolamento & purificação , Proteoma/isolamento & purificação , Proteômica/métodos , Algoritmos , Bases de Dados Factuais , Humanos , Peptídeos/química , Proteoma/química , Espectrometria de Massas em Tandem , Fluxo de Trabalho
12.
Anal Chem ; 91(6): 4010-4016, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30672687

RESUMO

Multiplexed, isobaric tagging methods are powerful techniques to increase throughput, precision, and accuracy in quantitative proteomics. The dynamic range and accuracy of quantitation, however, can be limited by coisolation of tag-containing peptides that release reporter ions and conflate quantitative measurements across precursors. Methods to alleviate these effects often lead to the loss of protein and peptide identifications through online or offline filtering of interference containing spectra. To alleviate this effect, high-Field Asymmetric-waveform Ion Mobility Spectroscopy (FAIMS) has been proposed as a method to reduce precursor coisolation and improve the accuracy and dynamic range of multiplex quantitation. Here we tested the use of FAIMS to improve quantitative accuracy using previously established TMT-based interference standards (triple-knockout [TKO] and Human-Yeast Proteomics Resource [HYPER]). We observed that FAIMS robustly improved the quantitative accuracy of both high-resolution MS2 (HRMS2) and synchronous precursor selection MS3 (SPS-MS3)-based methods without sacrificing protein identifications. We further optimized and characterized the main factors that enable robust use of FAIMS for multiplexed quantitation. We highlight these factors and provide method recommendations to take advantage of FAIMS technology to improve isobaric-tag-quantification moving forward.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Neoplasias/metabolismo , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Células HCT116 , Humanos , Peptídeos/metabolismo , Proteoma/metabolismo
13.
J Proteome Res ; 17(6): 2226-2236, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29734811

RESUMO

Mass spectrometry (MS) coupled toisobaric labeling has developed rapidly into a powerful strategy for high-throughput protein quantification. Sample multiplexing and exceptional sensitivity allow for the quantification of tens of thousands of peptides and, by inference, thousands of proteins from multiple samples in a single MS experiment. Accurate quantification demands a consistent and robust sample-preparation strategy. Here, we present a detailed workflow for SPS-MS3-based quantitative abundance profiling of tandem mass tag (TMT)-labeled proteins and phosphopeptides that we have named the streamlined (SL)-TMT protocol. We describe a universally applicable strategy that requires minimal individual sample processing and permits the seamless addition of a phosphopeptide enrichment step ("mini-phos") with little deviation from the deep proteome analysis. To showcase our workflow, we profile the proteome of wild-type Saccharomyces cerevisiae yeast grown with either glucose or pyruvate as the carbon source. Here, we have established a streamlined TMT protocol that enables deep proteome and medium-scale phosphoproteome analysis.


Assuntos
Protocolos Clínicos , Proteoma/análise , Manejo de Espécimes/métodos , Espectrometria de Massas em Tandem/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Fosfopeptídeos/análise , Ácido Pirúvico/farmacologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Manejo de Espécimes/normas , Fluxo de Trabalho
14.
Parasitol Res ; 117(8): 2543-2553, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29876861

RESUMO

Taeniasis-cysticercosis, a zoonosis caused by Taenia solium, is prevalent in underdeveloped countries, where marginalization promotes its continued transmission. Pig cysticercosis, an essential stage for transmission, is preventable by vaccination. An efficient multiepitope vaccine against pig cysticercosis, S3Pvac, was developed. Previous studies showed that antibodies against one of the S3Pvac components, GK-1, are capable of damaging T. solium cysticerci, inhibiting their ability to transform into the adult stage in golden hamster gut. This study is aimed to evaluate one of the mechanisms that could mediate anti-GK-1 antibody-dependent protection. To this end, pig anti-GK-1 antibodies were produced and purified by using protein A. Proteomic analysis showed that the induced antibodies recognized the respective native cysticercal protein KE7 (Bobes et al. Infect Immun 85:e00395-17, 2017) and two additional T. solium proteins (endophilin B1 and Gp50). A new procedure to evaluate cysticercus viability, based on quantifying the cytochrome c released after parasite damage, was developed. Taenia crassiceps cysticerci were cultured in the presence of differing amounts of anti-GK-1 antibody and complement in a saturating concentration, along with the respective controls. Cysticercus viability was assessed by recording parasite motility, trypan blue exclusion, and cytochrome c levels in cysticercal soluble extract. Anti-GK-1 antibody significantly increased cysticercus damage as measured by all three methods. Parasite evaluation by electron microscopy after treatment with anti-GK-1 antibody plus complement demonstrated cysticercus damage as shorter, capsule-severed microtrichia; a decrease in glycocalyx length with respect to untreated cysts; and disaggregated desmosomes. These results demonstrate that anti-GK-1 antibodies damage cysticerci through classic complement activation.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Ativação do Complemento , Taenia/imunologia , Animais , Antígenos de Helmintos/imunologia , Cricetinae , Cisticercose , Feminino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Proteômica , Suínos , Teníase/imunologia
15.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28923896

RESUMO

Taenia solium cysticercosis, a parasitic disease that affects human health in various regions of the world, is preventable by vaccination. Both the 97-amino-acid-long KETc7 peptide and its carboxyl-terminal, 18-amino-acid-long sequence (GK-1) are found in Taenia crassiceps Both peptides have proven protective capacity against cysticercosis and are part of the highly conserved, cestode-native, 264-amino-acid long protein KE7. KE7 belongs to a ubiquitously distributed family of proteins associated with membrane processes and may participate in several vital cell pathways. The aim of this study was to identify the T. solium KE7 (TsKE7) full-length protein and to determine its immunogenic properties. Recombinant TsKE7 (rTsKE7) was expressed in Escherichia coli Rosetta2 cells and used to obtain mouse polyclonal antibodies. Anti-rTsKE7 antibodies detected the expected native protein among the 350 spots developed from T. solium cyst vesicular fluid in a mass spectrometry-coupled immune proteomic analysis. These antibodies were then used to screen a phage-displayed 7-random-peptide library to map B-cell epitopes. The recognized phages displayed 9 peptides, with the consensus motif Y(F/Y)PS sequence, which includes YYYPS (named GK-1M, for being a GK-1 mimotope), exactly matching a part of GK-1. GK-1M was recognized by 58% of serum samples from cysticercotic pigs with 100% specificity but induced weak protection against murine cysticercosis. In silico analysis revealed a universal T-cell epitope(s) in native TsKE7 potentially capable of stimulating cytotoxic T lymphocytes and helper T lymphocytes under different major histocompatibility complex class I and class II mouse haplotypes. Altogether, these results provide a rationale for the efficacy of the KETc7, rTsKE7, and GK-1 peptides as vaccines.


Assuntos
Antígenos de Helmintos/imunologia , Taenia solium/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/genética , Clonagem Molecular , Cisticercose/imunologia , Cisticercose/prevenção & controle , Cisticercose/veterinária , Mapeamento de Epitopos , Escherichia coli/genética , Expressão Gênica , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Suínos , Linfócitos T/imunologia , Taenia solium/genética
16.
Exp Parasitol ; 172: 23-29, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27913109

RESUMO

Taeniasis/cysticercosis caused by the tapeworm Taenia solium is a parasite disease transmitted among humans and pigs, the main intermediate host. The larvae/cysts can lodge in several tissues of the pig, i.e. skeletal muscles and different locations of the central nervous system. The molecular mechanisms associated to tissue preferences of the cysts remain poorly understood. The major public health concern about this zoonosis is due to the human infections by the larval form in the central nervous system, causing a highly pleomorphic and debilitating disease known as neurocysticercosis. This study was aimed to explore the 2DE protein maps of T. solium cysts obtained from skeletal muscles and central nervous system of naturally infected pigs. The gel images were analyzed through a combination of PDQuest™ and multivariate analysis. Results showed that differences in the protein patterns of cysts obtained from both tissues were remarkably discrete. Only 7 protein spots were found specifically associated to the skeletal muscle localization of the cysts; none was found significantly associated to the central nervous system. The use of distinct protein fractions of cysts allowed preliminary identification of several tissue-specific antigenic bands. The implications of these findings are discussed, as well as several strategies directed to achieve the complete characterization of this parasite's proteome, in order to extend our understanding of the molecular mechanisms underlying tissue localization of the cysts and to open avenues for the development of immunological tissue-specific diagnosis of the disease.


Assuntos
Encéfalo/parasitologia , Cisticercose/veterinária , Cysticercus/química , Proteínas de Helminto/análise , Músculo Esquelético/parasitologia , Doenças dos Suínos/parasitologia , Taenia solium/química , Animais , Cisticercose/parasitologia , Cysticercus/isolamento & purificação , Eletroforese em Gel Bidimensional , Sus scrofa , Suínos , Taenia solium/isolamento & purificação
17.
J Proteome Res ; 14(12): 5306-17, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26503604

RESUMO

Characterizing a protein's function often requires a description of the cellular state in its absence. Multiplexing in mass spectrometry-based proteomics has now achieved the ability to globally measure protein expression levels in yeast from 10 cell states simultaneously. We applied this approach to quantify expression differences in wild type and nine deubiquitylating enzyme (DUB) knockout strains with the goal of creating "information networks" that might provide deeper, mechanistic insights into a protein's biological role. In total, more than 3700 proteins were quantified with high reproducibility across three biological replicates (30 samples in all). DUB mutants demonstrated different proteomics profiles, consistent with distinct roles for each family member. These included differences in total ubiquitin levels and specific chain linkages. Moreover, specific expression changes suggested novel functions for several DUB family members. For instance, the ubp3Δ mutant showed large expression changes for members of the cytochrome C oxidase complex, consistent with a role for Ubp3 in mitochondrial regulation. Several DUBs also showed broad expression changes for phosphate transporters as well as other components of the inorganic phosphate signaling pathway, suggesting a role for these DUBs in regulating phosphate metabolism. These data highlight the potential of multiplexed proteome-wide analyses for biological investigation and provide a framework for further study of the DUB family. Our methods are readily applicable to the entire collection of yeast deletion mutants and may help facilitate systematic analysis of yeast and other organisms.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteases Específicas de Ubiquitina/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Deleção de Genes , Técnicas de Inativação de Genes , Genes Fúngicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfatos/metabolismo , Análise Serial de Proteínas , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/genética
19.
Exp Parasitol ; 143: 11-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24768954

RESUMO

The host-parasite relationship in cestode infections is complex. One feature of this bidirectional molecular communication is the uptake of host proteins by the parasite. Here we describe the presence of several host proteins in the vesicular fluid of Taenia solium cysticerci dissected from the central nervous system and the skeletal muscle of naturally infected pigs. Using two-dimensional electrophoresis we compared the protein patterns of vesicular fluids of cysticerci vs. the sera of cysticercotic pigs. We found that the vesicular fluids of both groups of cysts showed 17 protein spots matching with the pig's sera spots. After mass spectrometry sequencing of these spots, five host proteins were identified: hemoglobin, albumin, serpin A3-8, haptoglobin, rho GTPase-activating protein 36-like. Three of the 17 spots corresponded to host protein fragments: hemoglobin, albumin and serpin A3-8. IgG heavy and light chains were also identified by Western blot using a specific antibody. Quantitative estimations indicated that the host proteins represented 11-13% of the protein content in the vesicular fluids. We also calculated the relative abundance of these host proteins in the vesicular fluids; all were represented in similar relative abundances as in host sera. This suggests that uptake of host proteins by cysticerci proceeds through an unspecific mechanism such as non-specific fluid pinocytosis.


Assuntos
Cisticercose/veterinária , Proteínas/análise , Doenças dos Suínos/parasitologia , Suínos/sangue , Taenia solium/química , Vesículas Transportadoras/química , Sequência de Aminoácidos , Análise de Variância , Animais , Western Blotting , Encéfalo/parasitologia , Cisticercose/sangue , Cisticercose/parasitologia , Cysticercus/química , Eletroforese em Gel Bidimensional , Interações Hospedeiro-Parasita , Espectrometria de Massas , Músculo Esquelético/parasitologia , Proteínas/química , Doenças dos Suínos/sangue
20.
Mol Cell Biol ; : 1-15, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387272

RESUMO

The CK1 family are conserved serine/threonine kinases with numerous substrates and cellular functions. The fission yeast CK1 orthologues Hhp1 and Hhp2 were first characterized as regulators of DNA repair, but the mechanism(s) by which CK1 activity promotes DNA repair had not been investigated. Here, we found that deleting Hhp1 and Hhp2 or inhibiting CK1 catalytic activities in yeast or in human cells increased double-strand breaks (DSBs). The primary pathways to repair DSBs, homologous recombination and nonhomologous end joining, were both less efficient in cells lacking Hhp1 and Hhp2 activity. To understand how Hhp1 and Hhp2 promote DNA damage repair, we identified new substrates of these enzymes using quantitative phosphoproteomics. We confirmed that Arp8, a component of the INO80 chromatin remodeling complex, is a bona fide substrate of Hhp1 and Hhp2 important for DNA repair. Our data suggest that Hhp1 and Hhp2 facilitate DNA repair by phosphorylating multiple substrates, including Arp8.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa