Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biol ; 25(19): 8717-31, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16166650

RESUMO

Alpha interferon (IFN-alpha) and IFN-beta are able to interfere with viral infection. They exert a vast array of biologic functions, including growth arrest, cell differentiation, and immune system regulation. This regulation extends from innate immunity to cellular and humoral adaptive immune responses. A strict control of expression is needed to prevent detrimental effects of unregulated IFN. Multiple IFN-A subtypes are coordinately induced in human and mouse cells infected by virus and exhibit differences in expression of their individual mRNAs. We demonstrated that the weakly expressed IFN-A11 gene is negatively regulated after viral infection, due to a distal negative regulatory element, binding homeoprotein pituitary homeobox 1 (Pitx1). Here we show that the POU protein Oct-1 binds in vitro and in vivo to the IFN-A11 promoter and represses IFN-A expression upon interferon regulatory factor overexpression. Furthermore, we show that Oct-1-deficient MEFs exhibit increased in vivo IFN-A gene expression and increased antiviral activity. Finally, the IFN-A expression pattern is modified in Oct-1-deficient MEFs. The broad representation of effective and potent octamer-like sequences within IFN-A promoters suggests an important role for Oct-1 in IFN-A regulation.


Assuntos
Regulação Viral da Expressão Gênica , Interferon-alfa/metabolismo , Animais , Antivirais/farmacologia , Sequência de Bases , Sítios de Ligação , Diferenciação Celular , Núcleo Celular/metabolismo , Cromatografia , DNA/química , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição Box Pareados/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional , Transfecção
2.
Mol Cell Biol ; 22(20): 7120-33, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12242290

RESUMO

Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by the specific transcription activators IFN regulatory factor 3 (IRF3) and IRF-7 and the homeoprotein transcription repressor Pitx1. We now show that repression by Pitx1 does not appear to be due to the recruitment of histone deacetylases. On the other hand, Pitx1 inhibits the IRF3 and IRF7 transcriptional activity of the IFN-A11 and IFN-A5 promoters and interacts physically with IRF3 and IRF7. Pitx1 trans-repression activity maps to specific C-terminal domains, and the Pitx1 homeodomain is involved in physical interaction with IRF3 or IRF7. IRF3 is able to bind to the antisilencer region of the IFN-A4 promoter, which overrides the repressive activity of Pitx1. These results indicate that interaction between the Pitx1 homeodomain and IRF3 or IRF7 and the ability of the Pitx1 C-terminal repressor domains to block IFN-A11 and IFN-A5 but not IFN-A4 promoter activities may contribute to our understanding of the complex differential transcriptional activation, repression, and antirepression of the IFN-A genes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Interferon-alfa/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Células HeLa , Histona Desacetilases/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Fator Regulador 3 de Interferon , Fator Regulador 7 de Interferon , Fatores de Transcrição Box Pareados , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Transcrição Gênica
3.
Biochimie ; 84(7): 643-54, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12453636

RESUMO

Different members of the interferon regulatory factor (IRF) family are early activated by viral infection of eukaryotic cells. The IRFs participate in the virus-induced transcriptional regulation of different genes, including the multigenic interferon-A (IFN-A) family, members of which are involved in the establishment of an antiviral state, cell growth inhibition or apoptosis. This study presents the recent progress in the field of virus-induced transactivation and repression of IFN-A gene promoters. Data presented on the modular organization of IFN-A gene promoters and their transactivation dependent on IRF-3 and IRF-7 provide a new insight on the cooperativity mechanisms among the different IRF family members. Data on the transcriptional repression of virus-induced interferon-A promoters by the homeodomain protein Pitx1 contribute to our understanding of the complex differential transcriptional activation, repression and antirepression of the IFN-A genes.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Interferon-alfa/genética , Proteínas Virais/fisiologia , Animais , Sequência de Bases , Proteínas de Ligação a DNA/fisiologia , Proteínas de Homeodomínio/fisiologia , Humanos , Fator Regulador 3 de Interferon , Fator Regulador 7 de Interferon , Interferon-alfa/biossíntese , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição Box Pareados , Regiões Promotoras Genéticas , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Ativação Transcricional
4.
Autoimmunity ; 36(8): 447-55, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14984021

RESUMO

Transcriptional regulation is a consequence of the combination of both activation and repression for establishing specific patterns of eukaryotic gene expression. The regulation of the expression of type I interferon (IFN-A and -B) multigene family is controlled primarily at the transcriptional level and has been widely studied as a model to understand the mechanisms of stable repression, transient expression and postinduction repression of genes. The positive and negative regulatory elements required for this on/off switch have been defined within a complex 5' upstream region of their transcription start site. The differential expression pattern of IFN-A genes is thought to involve both substitutions in the virus responsive element (VRE-A) and presence or absence of the distal negative regulatory element (DNRE) which is delimited upstream of the VRE-A. The interferon regulatory factors (IRF)-3 and -7 binding to the VRE-A and interacting as homodimers or heterodimers participate in the virus-induced transcriptional activation of IFN-A family. This data and the presence of homeodomain protein pituitary homeobox 1 (Pitx1) binding to the distal DNRE, negatively regulating the IRF-3 and IRF-7 activities and interacting physically with IRF-3 and IRF-7 contribute to our understanding of the complex differential transcriptional activation and repression of the IFN-A genes.


Assuntos
Interferon-alfa/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fator Regulador 3 de Interferon , Fator Regulador 7 de Interferon , Interferon-alfa/biossíntese , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição Box Pareados , Sequências Reguladoras de Ácido Nucleico , Elementos de Resposta , Fatores de Transcrição/química , Fatores de Transcrição/genética
5.
Biochemistry ; 41(8): 2760-8, 2002 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-11851423

RESUMO

The estrogen receptor (ER) plays a critical role in the development of hormone-dependent cancer. Since HMGA1, a member of the "high mobility group" proteins, is overexpressed in certain malignant cells, we investigated the interaction between these nuclear proteins. Transfection of the HMGA1 expression vector increased 2-fold the transcriptional activation of ERE containing promoter by E(2). Furthermore, the HMGA1 protein stimulated severalfold the binding of purified ER to the consensus ERE oligonucleotides in gel mobility shift assays and saturation assays. However, HMGA1 could not bind alone either to consensus or to modified EREs, and the minor groove binding drug distamycin A failed to prevent the synergism between ER and HMGA1. This could suggest that the binding of HMGA1 to DNA was not required for its stimulatory effect. Antibody supershift assays showed that HMGA1 was required for increased binding and suggest a protein-protein interaction between those factors. This was confirmed by pull down assay. These data show that HMGA1 acts in concert with the ER to regulate the expression of estrogen responsive genes through a mechanism that does not require direct binding to DNA. These observations may be relevant in malignant cells expressing both proteins.


Assuntos
Proteínas de Grupo de Alta Mobilidade/fisiologia , Receptores de Estrogênio/metabolismo , Transcrição Gênica/fisiologia , Sequência de Bases , Sítios de Ligação , Sondas de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Regiões Promotoras Genéticas , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa