Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 101(4): 151270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35987046

RESUMO

BACKGROUND: Extracellular vesicles (EVs) secreted by neuronal cells in vitro have promising therapeutic potential for brain diseases. Optimization of cell culture conditions and methodologies for high-yield isolation of EVs for preclinical and clinical applications, however, remains a challenge. OBJECTIVE: To probe the cell culture conditions required for optimal EV secretion by human-derived neuronal cells. METHODOLOGY: First, we optimized the EV purification protocol using human mesenchymal stromal cell (MSC) cultures. Next, we compared the effects of different variables in human pluripotent stem cell (hPSC)-derived neuronal cultures on EV secretion. EVs were isolated from cell conditioned media (CCM) and control media with no cells (NCC) using ultrafiltration combined with size-exclusion chromatography (SEC). The hPSC neurons were cultured in 2 different media from which EVs were collected at 2 maturation time-points (days 46 and 60). Stimulation with 25 mM KCl was also evaluated as an activator of EV secretion by neurons. The collected SEC fractions were analyzed by nanoparticle tracking analysis (NTA), protein concentration assay, and blinded transmission electron microscopy (TEM). RESULTS: A peak in cup-shaped particles was observed in SEC fractions 7-10 of MSC samples, but not corresponding media controls, indicating successful isolation of EVs. Culture medium had no significant effect on EV yield. The EV yield of the samples did not differ significantly according to the culture media used or the cell maturation time-points. Stimulation of neurons with KCl for 3 h reduced rather than increased the EV yield. CONCLUSIONS: We demonstrated successful EV isolation from MSC and neuronal cells using an ultrafiltration-SEC method. The EV yield from MSC and neuronal cultures exhibited a large batch effect, apparently related to the culture media used, highlighting the importance of including NCC as a negative control in all cell culture experiments.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Vesículas Extracelulares/metabolismo , Meios de Cultivo Condicionados/farmacologia , Diferenciação Celular , Técnicas de Cultura de Células
2.
J Extracell Vesicles ; 8(1): 1555410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30574280

RESUMO

The microRNA (miRNA) cargo contained in plasma extracellular vesicles (EVs) offers a relatively little explored source of biomarkers for brain diseases that can be obtained noninvasively. Methods to isolate EVs from plasma, however, are still being developed. For EV isolation, it is important to ensure the removal of vesicle-free miRNAs, which account for approximately two-thirds of plasma miRNAs. Membrane particle precipitation-based EV isolation is an appealing method because of the simple protocol and high yield. Here, we evaluated the performance of a precipitation-based method to obtain enriched EV-specific miRNAs from a small volume of rat plasma. We performed size-exclusion chromatography (SEC) on precipitation-isolated EV pellets and whole plasma. The SEC fractions were analysed using Nanoparticle Tracking Analysis (NTA), protein and miRNA concentration assays, and droplet digital polymerase chain reaction for four miRNAs (miR-142-3p, miR-124-3p, miR-23a, miR-122). Precipitation-isolated EVs and selected SEC fractions from the plasma were also analysed with transmission electron microscopy (TEM). Precipitation-based EV isolation co-precipitated 9% to 15% of plasma proteins and 21% to 99% of vesicle-free miRNAs, depending on the individual miRNAs. In addition, the amount of miR-142-3p, found mainly in EV fractions, was decreased in the EV fractions, indicating that part of it was lost during precipitation-based isolation. Western blot and TEM revealed both protein and lipoprotein contamination in the precipitation-isolated EV-pellets. Our findings indicate that a precipitation-based method is not sufficient for purifying plasma EV-contained miRNA cargo. The particle number measured by NTA is high, but this is mostly due to the contaminating lipoproteins. Although a part of the vesicle-free miRNA is removed, vesicle-free miRNA still dominates in plasma EV pellets isolated by the precipitation-based method.

3.
Acta Neuropathol Commun ; 6(1): 17, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482641

RESUMO

Traumatic brain injury (TBI) induces a wide variety of cellular and molecular changes that can continue for days to weeks to months, leading to functional impairments. Currently, there are no pharmacotherapies in clinical use that favorably modify the post-TBI outcome, due in part to limited understanding of the mechanisms of TBI-induced pathologies. Our system biology analysis tested the hypothesis that chronic transcriptomics changes induced by TBI are controlled by altered DNA-methylation in gene promoter areas or by transcription factors. We performed genome-wide methyl binding domain (MBD)-sequencing (seq) and RNA-seq in perilesional, thalamic, and hippocampal tissue sampled at 3 months after TBI induced by lateral fluid percussion in adult male Sprague-Dawley rats. We investigated the regulated molecular networks and mechanisms underlying the chronic regulation, particularly DNA methylation and transcription factors. Finally, we identified compounds that modulate the transcriptomics changes and could be repurposed to improve recovery. Unexpectedly, DNA methylation was not a major regulator of chronic post-TBI transcriptomics changes. On the other hand, the transcription factors Cebpd, Pax6, Spi1, and Tp73 were upregulated at 3 months after TBI (False discovery rate < 0.05), which was validated using digital droplet polymerase chain reaction. Transcription regulatory network analysis revealed that these transcription factors regulate apoptosis, inflammation, and microglia, which are well-known contributors to secondary damage after TBI. Library of Integrated Network-based Cellular Signatures (LINCS) analysis identified 118 pharmacotherapies that regulate the expression of Cebpd, Pax6, Spi1, and Tp73. Of these, the antidepressant and/or antipsychotic compounds trimipramine, rolipramine, fluspirilene, and chlorpromazine, as well as the anti-cancer therapies pimasertib, tamoxifen, and vorinostat were strong regulators of the identified transcription factors, suggesting their potential to modulate the regulated transcriptomics networks to improve post-TBI recovery.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Fator de Transcrição PAX6/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Transcriptoma/fisiologia , Proteína Tumoral p73/metabolismo , Animais , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Doença Crônica , Metilação de DNA , Modelos Animais de Doenças , Masculino , Ratos Sprague-Dawley , Transcriptoma/efeitos dos fármacos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa