Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2302815120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307484

RESUMO

Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane, and its activity accounts for nearly all biologically produced methane released into the atmosphere. The assembly of MCR is an intricate process involving the installation of a complex set of posttranslational modifications and the unique Ni-containing tetrapyrrole called coenzyme F430. Despite decades of research, details of MCR assembly remain largely unresolved. Here, we report the structural characterization of MCR in two intermediate states of assembly. These intermediate states lack one or both F430 cofactors and form complexes with the previously uncharacterized McrD protein. McrD is found to bind asymmetrically to MCR, displacing large regions of the alpha subunit and increasing active-site accessibility for the installation of F430-shedding light on the assembly of MCR and the role of McrD therein. This work offers crucial information for the expression of MCR in a heterologous host and provides targets for the design of MCR inhibitors.


Assuntos
Atmosfera , Metano
2.
Mol Microbiol ; 119(3): 350-363, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36660820

RESUMO

Methanogenic archaea belonging to the Order Methanosarcinales conserve energy using an electron transport chain (ETC). In the genetically tractable strain Methanosarcina acetivorans, ferredoxin donates electrons to the ETC via the Rnf (Rhodobacter nitrogen fixation) complex. The Rnf complex in M. acetivorans, unlike its counterpart in Bacteria, contains a multiheme c-type cytochrome (MHC) subunit called MmcA. Early studies hypothesized MmcA is a critical component of Rnf, however recent work posits that the primary role of MmcA is facilitating extracellular electron transport. To explore the physiological role of MmcA, we characterized M. acetivorans mutants lacking either the entire Rnf complex (∆mmcA-rnf) or just the MmcA subunit (∆mmcA). Our data show that MmcA is essential for growth during acetoclastic methanogenesis but neither Rnf nor MmcA is required for methanogenic growth on methylated compounds. On methylated compounds, the absence of MmcA alone leads to a more severe growth defect compared to a Rnf deletion likely due to different strategies for ferredoxin oxidation that arise in each strain. Transcriptomic data suggest that the ∆mmcA mutant might oxidize ferredoxin by upregulating the cytosolic Wood-Ljundahl pathway for acetyl-CoA synthesis, whereas the ∆mmcA-rnf mutant may repurpose the F420 dehydrogenase complex (Fpo) to oxidize ferredoxin coupled to proton translocation. Beyond energy conservation, the deletion of rnf or mmcA leads to global transcriptional changes of genes involved in methanogenesis, carbon assimilation and regulation. Overall, our study provides systems-level insights into the non-overlapping roles of the Rnf bioenergetic complex and the associated MHC, MmcA.


Assuntos
Carbono , Methanosarcina , Methanosarcina/genética , Carbono/metabolismo , Ferredoxinas/metabolismo , Oxirredução , Citocromos/metabolismo , Metano/metabolismo
3.
Appl Environ Microbiol ; : e0222023, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916294

RESUMO

Methyl-coenzyme M reductase (MCR) catalyzes the final step of methanogenesis, the microbial metabolism responsible for nearly all biological methane emissions to the atmosphere. Decades of biochemical and structural research studies have generated detailed insights into MCR function in vitro, yet very little is known about the interplay between MCR and methanogen physiology. For instance, while it is routinely stated that MCR catalyzes the rate-limiting step of methanogenesis, this has not been categorically tested. In this study, to gain a more direct understanding of MCR's control on the growth of Methanosarcina acetivorans, we generate a strain with an inducible mcr operon on the chromosome, allowing for careful control of MCR expression. We show that MCR is not growth rate-limiting in substrate-replete batch cultures. However, through careful titration of MCR expression, growth-limiting state(s) can be obtained. Transcriptomic analysis of M. acetivorans experiencing MCR limitation reveals a global response with hundreds of differentially expressed genes across diverse functional categories. Notably, MCR limitation leads to strong induction of methylsulfide methyltransferases, likely due to insufficient recycling of metabolic intermediates. In addition, the mcr operon is not transcriptionally regulated, i.e., it is constitutively expressed, suggesting that the overabundance of MCR might be beneficial when cells experience nutrient limitation or stressful conditions. Altogether, we show that there is a wide range of cellular MCR concentrations that can sustain optimal growth, suggesting that other factors such as anabolic reactions might be rate-limiting for methanogenic growth. IMPORTANCE: Methane is a potent greenhouse gas that has contributed to ca. 25% of global warming in the post-industrial era. Atmospheric methane is primarily of biogenic origin, mostly produced by microorganisms called methanogens. Methyl-coenzyme M reductase (MCR) catalyzes methane formatio in methanogens. Even though MCR comprises ca. 10% of the cellular proteome, it is hypothesized to be growth-limiting during methanogenesis. In this study, we show that Methanosarcina acetivorans cells grown in substrate-replicate batch cultures produce more MCR than its cellular demand for optimal growth. The tools outlined in this study can be used to refine metabolic models of methanogenesis and assay lesions in MCR in a higher-throughput manner than isolation and biochemical characterization of pure protein.

4.
PLoS Biol ; 19(5): e3001208, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34038406

RESUMO

Normal cellular processes give rise to toxic metabolites that cells must mitigate. Formaldehyde is a universal stressor and potent metabolic toxin that is generated in organisms from bacteria to humans. Methylotrophic bacteria such as Methylorubrum extorquens face an acute challenge due to their production of formaldehyde as an obligate central intermediate of single-carbon metabolism. Mechanisms to sense and respond to formaldehyde were speculated to exist in methylotrophs for decades but had never been discovered. Here, we identify a member of the DUF336 domain family, named efgA for enhanced formaldehyde growth, that plays an important role in endogenous formaldehyde stress response in M. extorquens PA1 and is found almost exclusively in methylotrophic taxa. Our experimental analyses reveal that EfgA is a formaldehyde sensor that rapidly arrests growth in response to elevated levels of formaldehyde. Heterologous expression of EfgA in Escherichia coli increases formaldehyde resistance, indicating that its interaction partners are widespread and conserved. EfgA represents the first example of a formaldehyde stress response system that does not involve enzymatic detoxification. Thus, EfgA comprises a unique stress response mechanism in bacteria, whereby a single protein directly senses elevated levels of a toxic intracellular metabolite and safeguards cells from potential damage.


Assuntos
Formaldeído/metabolismo , Methylobacterium extorquens/metabolismo , Bactérias/metabolismo , Formaldeído/toxicidade , Methylobacterium/genética , Methylobacterium/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia
5.
PLoS Biol ; 18(2): e3000507, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32092071

RESUMO

The enzyme methyl-coenzyme M reductase (MCR) plays an important role in mediating global levels of methane by catalyzing a reversible reaction that leads to the production or consumption of this potent greenhouse gas in methanogenic and methanotrophic archaea. In methanogenic archaea, the alpha subunit of MCR (McrA) typically contains four to six posttranslationally modified amino acids near the active site. Recent studies have identified enzymes performing two of these modifications (thioglycine and 5-[S]-methylarginine), yet little is known about the formation and function of the remaining posttranslationally modified residues. Here, we provide in vivo evidence that a dedicated S-adenosylmethionine-dependent methyltransferase encoded by a gene we designated methylcysteine modification (mcmA) is responsible for formation of S-methylcysteine in Methanosarcina acetivorans McrA. Phenotypic analysis of mutants incapable of cysteine methylation suggests that the S-methylcysteine residue might play a role in adaption to mesophilic conditions. To examine the interactions between the S-methylcysteine residue and the previously characterized thioglycine, 5-(S)-methylarginine modifications, we generated M. acetivorans mutants lacking the three known modification genes in all possible combinations. Phenotypic analyses revealed complex, physiologically relevant interactions between the modified residues, which alter the thermal stability of MCR in a combinatorial fashion that is not readily predictable from the phenotypes of single mutants. High-resolution crystal structures of inactive MCR lacking the modified amino acids were indistinguishable from the fully modified enzyme, suggesting that interactions between the posttranslationally modified residues do not exert a major influence on the static structure of the enzyme but rather serve to fine-tune the activity and efficiency of MCR.


Assuntos
Aminoácidos/metabolismo , Methanosarcina/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Methanosarcina/genética , Methanosarcina/crescimento & desenvolvimento , Methanosarcina/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Mutação , Óperon , Oxirredutases/genética , Fenótipo , Processamento de Proteína Pós-Traducional/genética , Subunidades Proteicas , Temperatura
7.
Proc Natl Acad Sci U S A ; 114(11): 2976-2981, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28265068

RESUMO

Although Cas9-mediated genome editing has proven to be a powerful genetic tool in eukaryotes, its application in Bacteria has been limited because of inefficient targeting or repair; and its application to Archaea has yet to be reported. Here we describe the development of a Cas9-mediated genome-editing tool that allows facile genetic manipulation of the slow-growing methanogenic archaeon Methanosarcina acetivorans Introduction of both insertions and deletions by homology-directed repair was remarkably efficient and precise, occurring at a frequency of approximately 20% relative to the transformation efficiency, with the desired mutation being found in essentially all transformants examined. Off-target activity was not observed. We also observed that multiple single-guide RNAs could be expressed in the same transcript, reducing the size of mutagenic plasmids and simultaneously simplifying their design. Cas9-mediated genome editing reduces the time needed to construct mutants by more than half (3 vs. 8 wk) and allows simultaneous construction of double mutants with high efficiency, exponentially decreasing the time needed for complex strain constructions. Furthermore, coexpression the nonhomologous end-joining (NHEJ) machinery from the closely related archaeon, Methanocella paludicola, allowed efficient Cas9-mediated genome editing without the need for a repair template. The NHEJ-dependent mutations included deletions ranging from 75 to 2.7 kb in length, most of which appear to have occurred at regions of naturally occurring microhomology. The combination of homology-directed repair-dependent and NHEJ-dependent genome-editing tools comprises a powerful genetic system that enables facile insertion and deletion of genes, rational modification of gene expression, and testing of gene essentiality.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma , Methanosarcina/genética , Reparo do DNA , Regulação da Expressão Gênica em Archaea , Genes Essenciais , Vetores Genéticos/genética , Genômica/métodos , Mutação , Plasmídeos/genética , RNA Guia de Cinetoplastídeos
8.
J Bacteriol ; 196(23): 4130-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225269

RESUMO

Methylotrophs grow on reduced single-carbon compounds like methylamine as the sole source of carbon and energy. In Methylobacterium extorquens AM1, the best-studied aerobic methylotroph, a periplasmic methylamine dehydrogenase that catalyzes the primary oxidation of methylamine to formaldehyde has been examined in great detail. However, recent metagenomic data from natural ecosystems are revealing the abundance and importance of lesser-known routes, such as the N-methylglutamate pathway, for methylamine oxidation. In this study, we used M. extorquens PA1, a strain that is closely related to M. extorquens AM1 but is lacking methylamine dehydrogenase, to dissect the genetics and physiology of the ecologically relevant N-methylglutamate pathway for methylamine oxidation. Phenotypic analyses of mutants with null mutations in genes encoding enzymes of the N-methylglutamate pathway suggested that γ-glutamylmethylamide synthetase is essential for growth on methylamine as a carbon source but not as a nitrogen source. Furthermore, analysis of M. extorquens PA1 mutants with defects in methylotrophy-specific dissimilatory and assimilatory modules suggested that methylamine use via the N-methylglutamate pathway requires the tetrahydromethanopterin (H4MPT)-dependent formaldehyde oxidation pathway but not a complete tetrahydrofolate (H4F)-dependent formate assimilation pathway. Additionally, we present genetic evidence that formaldehyde-activating enzyme (FAE) homologs might be involved in methylotrophy. Null mutants of FAE and homologs revealed that FAE and FAE2 influence the growth rate and FAE3 influences the yield during the growth of M. extorquens PA1 on methylamine.


Assuntos
Carbono/metabolismo , Glutamatos/metabolismo , Análise do Fluxo Metabólico , Redes e Vias Metabólicas/genética , Metilaminas/metabolismo , Methylobacterium extorquens/metabolismo , Metabolismo Energético , Deleção de Genes , Methylobacterium extorquens/genética , Methylobacterium extorquens/crescimento & desenvolvimento , Oxirredução
9.
Nat Commun ; 15(1): 3300, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632227

RESUMO

Methanogens are a diverse group of Archaea that obligately couple energy conservation to the production of methane. Some methanogens encode alternate pathways for energy conservation, like anaerobic respiration, but the biochemical details of this process are unknown. We show that a multiheme c-type cytochrome called MmcA from Methanosarcina acetivorans is important for intracellular electron transport during methanogenesis and can also reduce extracellular electron acceptors like soluble Fe3+ and anthraquinone-2,6-disulfonate. Consistent with these observations, MmcA displays reversible redox features ranging from -100 to -450 mV versus SHE. Additionally, mutants lacking mmcA have significantly slower Fe3+ reduction rates. The mmcA locus is prevalent in members of the Order Methanosarcinales and is a part of a distinct clade of multiheme cytochromes that are closely related to octaheme tetrathionate reductases. Taken together, MmcA might act as an electron conduit that can potentially support a variety of energy conservation strategies that extend beyond methanogenesis.


Assuntos
Elétrons , Methanosarcina , Transporte de Elétrons , Methanosarcina/metabolismo , Oxirredução , Citocromos/metabolismo , Metano/metabolismo
10.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131651

RESUMO

Methanogens are a diverse group of Archaea that couple energy conservation to the production of methane gas. While most methanogens have no alternate mode of energy conservation, strains like Methanosarcina acetivorans are known to also conserve energy by dissimilatory metal reduction (DSMR) in the presence of soluble ferric iron or iron-containing minerals. The ecological ramifications of energy conservation decoupled from methane production in methanogens are substantial, yet the molecular details are poorly understood. In this work, we conducted in vitro and in vivo studies with a multiheme c-type cytochrome (MHC), called MmcA, to establish its role during methanogenesis and DSMR in M. acetivorans. MmcA purified from M. acetivorans can donate electrons to methanophenazine, a membrane-bound electron carrier, to facilitate methanogenesis. In addition, MmcA can also reduce Fe(III) and the humic acid analog anthraquinone-2,6-disulfonate (AQDS) during DSMR. Furthermore, mutants lacking mmcA have slower Fe(III) reduction rates. The redox reactivities of MmcA are consistent with the electrochemical data where MmcA displays reversible redox features ranging from -100 to -450 mV versus SHE. MmcA is prevalent in members of the Order Methanosarcinales but does not belong to a known family of MHCs linked to extracellular electron transfer, bioinformatically, and instead forms a distinct clade that is closely related to octaheme tetrathionate reductases. Taken together, this study shows that MmcA is widespread in methanogens with cytochromes where it acts as an electron conduit to support a variety of energy conservation strategies that extend beyond methanogenesis.

11.
Elife ; 112022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380107

RESUMO

c-Type cytochromes (cyt c) are proteins that undergo post-translational modification to covalently bind heme, which allows them to facilitate redox reactions in electron transport chains across all domains of life. Genomic evidence suggests that cyt c are involved in electron transfer processes among the Archaea, especially in members that produce or consume the potent greenhouse gas methane. However, neither the maturation machinery for cyt c in Archaea nor their role in methane metabolism has ever been functionally characterized. Here, we have used CRISPR-Cas9 genome editing tools to map a distinct pathway for cyt c biogenesis in the model methanogenic archaeon Methanosarcina acetivorans, and have also identified substrate-specific functional roles for cyt c during methanogenesis. Although the cyt c maturation machinery from M. acetivorans is universally conserved in the Archaea, our evolutionary analyses indicate that different clades of Archaea acquired this machinery through multiple independent horizontal gene transfer events from different groups of Bacteria. Overall, we demonstrate the convergent evolution of a novel Archaea-specific cyt c maturation machinery and its physiological role during methanogenesis, a process which contributes substantially to global methane emissions.


Archaea are single-celled organisms that were discovered over half a century ago. Recently, there has been a renewed interest in these microbes because theyplay a key role in climate change by controlling greenhouse gas emissions, like methane. Indeed, methane-producing Archaea generate nearly 70% of the methane gas released into the atmosphere. A group of proteins called c-type cytochromes are essential to energy generation in several methane-producing archaea. However, it is a mystery how Archaea assemble their c-type cytochromes. In fact, genomic studies suggest that Archaea are missing some of the c-type cytochrome assembly machinery that bacteria use. This has led scientists to suspect that Archaea have an alternate mechanism for building these essential components. To solve this mystery, Gupta, Shalvarjian, and Nayak used CRISPR-Cas9 gene-editing tools to characterize which proteins are essential for c-type cytochrome production in Methanosarcina acetivorans, a species of Archaea that produces methane. These experiments showed that M. acetivorans discarded a few parts of the process used by bacteria to generate c-type cytochromes, streamlining the assembly of these proteins. By comparing the genes of different Archaeal species, Gupta, Shalvarjian and Nayak were able to determine that Archaea acquired the genes for producing c-type cytochromes from bacteria via horizontal gene transfer, a process in which genes move directly from one organism into another. The streamlining of the process took place later, as different Archaeal species evolved independently, but losing the same parts of the process. Gupta Shalvajiran and Nayak's experiments also showed that c-type cytochromes are essential for the growth and fitness of methane-producing Archaea like M. acetivorans. The role of c-type cytochromes in methane production varies in different species of Archaea depending on their growth substrate or where they live. These results provide vital information about how Archaea produce methane, and the tools and techniques developed will aid further investigation of the role of Archaea in climate change.


Assuntos
Archaea , Methanosarcina , Archaea/metabolismo , Citocromos/metabolismo , Transporte de Elétrons/genética , Metano/metabolismo , Methanosarcina/genética
12.
Curr Opin Microbiol ; 60: 8-15, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33561735

RESUMO

Methanogenesis is a widespread metabolism of evolutionary and environmental importance that is likely to have originated on early Earth. Microorganisms that perform methanogenesis, termed methanogens, belong exclusively to the domain Archaea. Despite maintaining eukaryotic transcription machinery and homologs of bacterial regulators, archaeal transcription and gene regulation appear to be distinct from either domain. While genes involved in methanogenic metabolism have been identified and characterized, their regulation in response to both extracellular and intracellular signals is less understood. Here, we review recent reports on transcriptional regulation of methanogenesis using two model methanogens, Methanococcus maripaludis and Methanosarcina acetivorans, and highlight directions for future research in this nascent field.


Assuntos
Archaea , Metano , Archaea/genética , Regulação da Expressão Gênica em Archaea , Mathanococcus/genética , Methanosarcina/genética
13.
ISME J ; 13(9): 2173-2182, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31053830

RESUMO

Sequenced archaeal genomes are mostly smaller and more streamlined than typical bacterial genomes; however, members of the Methanosarcina genus within the Euryarchaeaota are a significant exception, with M. acetivorans being the largest archaeal genome (5.8 Mbp) sequenced thus far. This finding is partially explained by extensive gene duplication within Methanosarcina spp. Significantly, the evolutionary pressures leading to gene duplication and subsequent genome expansion have not been well investigated, especially with respect to biological methane production (methanogenesis), which is the key biological trait of these environmentally important organisms. In this study, we address this question by specifically probing the functional evolution of two methylamine-specific methyltransferase paralogs in members of the Methanosarcina genus. Using the genetically tractable strain, M. acetivorans, we first show that the two paralogs have distinct cellular functions: one being required for methanogenesis from methylamine, the other for use of methylamine as a nitrogen source. Subsequently, through comparative sequence analyses, we show that functional divergence of paralogs is primarily mediated by divergent evolution of the 5' regulatory region, despite frequent gene conversion within the coding sequence. This unique evolutionary paradigm for functional divergence of genes post-duplication underscores a divergent role for an enzyme singularly associated with methanogenic metabolism in other aspects of cell physiology.


Assuntos
Proteínas Arqueais/metabolismo , Conversão Gênica , Methanosarcina/enzimologia , Methanosarcina/genética , Metilaminas/metabolismo , Metiltransferases/metabolismo , Proteínas Arqueais/genética , Genoma Arqueal , Methanosarcina/metabolismo , Metiltransferases/genética
14.
Methods Enzymol ; 613: 325-347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30509472

RESUMO

Methanogenic archaea generate methane as a by-product of anaerobic respiration using CO2, C1 compounds (like methanol or methylated amines), or acetate as terminal electron acceptors. Methanogens are an untapped resource for biotechnological advances related to methane production as well as methane consumption. However, key biological features of these organisms remain poorly understood. One such feature is the enzyme methyl-coenzyme M reductase (referred to as MCR), which catalyzes the last step in the methanogenic pathway and results in methane formation. Gene essentiality has limited genetic analyses of MCR thus far. Therefore, studies of this important enzyme have been limited to biochemical and biophysical techniques that are especially laborious and often reliant on sophisticated instrumentation that is not commonly available. In this chapter, we outline our recently developed CRISPR-Cas9-based genome editing tools and describe how these tools have been used for the introduction of a tandem affinity purification tag at the chromosomal mcr locus in the model methanogen, Methanosarcina acetivorans C2A. We also report a protocol for rapid affinity purification of MCR from M. acetivorans C2A that will enable high-throughput studies of this enzyme in the future.


Assuntos
Methanosarcina/enzimologia , Oxirredutases/genética , Oxirredutases/metabolismo , Edição de Genes , Plasmídeos/genética
15.
Elife ; 62017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28880150

RESUMO

Methyl-coenzyme M reductase (MCR), found in strictly anaerobic methanogenic and methanotrophic archaea, catalyzes the reversible production and consumption of the potent greenhouse gas methane. The α subunit of MCR (McrA) contains several unusual post-translational modifications, including a rare thioamidation of glycine. Based on the presumed function of homologous genes involved in the biosynthesis of thioviridamide, a thioamide-containing natural product, we hypothesized that the archaeal tfuA and ycaO genes would be responsible for post-translational installation of thioglycine into McrA. Mass spectrometric characterization of McrA from the methanogenic archaeon Methanosarcina acetivorans lacking tfuA and/or ycaO revealed the presence of glycine, rather than thioglycine, supporting this hypothesis. Phenotypic characterization of the ∆ycaO-tfuA mutant revealed a severe growth rate defect on substrates with low free energy yields and at elevated temperatures (39°C - 45°C). Our analyses support a role for thioglycine in stabilizing the protein secondary structure near the active site.


Assuntos
Amidas/química , Archaea/enzimologia , Metano/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Processamento de Proteína Pós-Traducional , Compostos de Sulfidrila/química , Archaea/crescimento & desenvolvimento , Sítios de Ligação , Catálise , Filogenia
16.
Curr Biol ; 26(11): 1416-26, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27212407

RESUMO

Microorganisms often encode multiple non-orthologous metabolic modules that catalyze the same reaction. However, little experimental evidence actually demonstrates a selective basis for metabolic degeneracy. Many methylotrophs-microorganisms that grow on reduced single-carbon compounds-like Methylobacterium extorquens AM1 encode two routes for methylamine oxidation: the periplasmic methylamine dehydrogenase (MaDH) and the cytoplasmic N-methylglutamate (NMG) pathway. In Methylobacterium extorquens AM1, MaDH is essential for methylamine growth, but the NMG pathway has no known physiological role. Here, we use experimental evolution of two isolates lacking (or incapable of using) MaDH to uncover the physiological challenges that need to be overcome in order to use the NMG pathway for growth on methylamine as a carbon and energy source. Physiological characterization of the evolved isolates revealed regulatory rewiring to increase expression of the NMG pathway and novel mechanisms to mitigate cytoplasmic ammonia buildup. These adaptations led us to infer and validate environmental conditions under which the NMG pathway is advantageous compared to MaDH. The highly expressed MaDH enables rapid growth on high concentrations of methylamine as the primary carbon and energy substrate, whereas the energetically expensive NMG pathway plays a pivotal role during growth with methylamine as the sole nitrogen source, which we demonstrate is especially true under limiting concentrations (<1 mM). Tradeoffs between cellular localization and ammonium toxicity lead to selection for this apparent degeneracy as it is beneficial to facultative methylotrophs that have to switch between using methylamine as a carbon and energy source or just a nitrogen source.


Assuntos
Carbono/metabolismo , Metilaminas/metabolismo , Methylobacterium extorquens/metabolismo , Nitrogênio/metabolismo , Seleção Genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Redes e Vias Metabólicas , Methylobacterium extorquens/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo
17.
Microorganisms ; 3(1): 60-79, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-27682079

RESUMO

Methylamine plays an important role in the global carbon and nitrogen budget; microorganisms that grow on reduced single carbon compounds, methylotrophs, serve as a major biological sink for methylamine in aerobic environments. Two non-orthologous, functionally degenerate routes for methylamine oxidation have been studied in methylotrophic Proteobacteria: Methylamine dehydrogenase and the N-methylglutamate pathway. Recent work suggests the N-methylglutamate (NMG) pathway may be more common in nature than the well-studied methylamine dehydrogenase (MaDH, encoded by the mau gene cluster). However, the distribution of these pathways across methylotrophs has never been analyzed. Furthermore, even though horizontal gene transfer (HGT) is commonly invoked as a means to transfer these pathways between strains, the physiological barriers to doing so have not been investigated. We found that the NMG pathway is both more abundant and more universally distributed across methylotrophic Proteobacteria compared to MaDH, which displays a patchy distribution and has clearly been transmitted by HGT even amongst very closely related strains. This trend was especially prominent in well-characterized strains of the Methylobacterium extroquens species, which also display significant phenotypic variability during methylamine growth. Strains like Methylobacterium extorquens PA1 that only encode the NMG pathway grew on methylamine at least five-fold slower than strains like Methylobacterium extorquens AM1 that also possess the mau gene cluster. By mimicking a HGT event through the introduction of the M. extorquens AM1 mau gene cluster into the PA1 genome, the resulting strain instantaneously achieved a 4.5-fold increase in growth rate on methylamine and a 11-fold increase in fitness on methylamine, which even surpassed the fitness of M. extorquens AM1. In contrast, when three replicate populations of wild type M. extorquens PA1 were evolved on methylamine as the sole carbon and energy source for 150 generations neither fitness nor growth rate improved. These results suggest that the NMG pathway permits slow growth on methylamine and is widely distributed in methylotrophs; however, rapid growth on methylamine can be achieved quite readily through acquisition of the mau cluster by HGT.

18.
PLoS One ; 9(9): e107887, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25232997

RESUMO

Methylobacterium extorquens AM1, a strain serendipitously isolated half a century ago, has become the best-characterized model system for the study of aerobic methylotrophy (the ability to grow on reduced single-carbon compounds). However, with 5 replicons and 174 insertion sequence (IS) elements in the genome as well as a long history of domestication in the laboratory, genetic and genomic analysis of M. extorquens AM1 face several challenges. On the contrary, a recently isolated strain - M. extorquens PA1- is closely related to M. extorquens AM1 (100% 16S rRNA identity) and contains a streamlined genome with a single replicon and only 20 IS elements. With the exception of the methylamine dehydrogenase encoding gene cluster (mau), genes known to be involved in methylotrophy are well conserved between M. extorquens AM1 and M. extorquens PA1. In this paper we report four primary findings regarding methylotrophy in PA1. First, with a few notable exceptions, the repertoire of methylotrophy genes between PA1 and AM1 is extremely similar. Second, PA1 grows faster with higher yields compared to AM1 on C1 and multi-C substrates in minimal media, but AM1 grows faster in rich medium. Third, deletion mutants in PA1 throughout methylotrophy modules have the same C1 growth phenotypes observed in AM1. Finally, the precision of our growth assays revealed several unexpected growth phenotypes for various knockout mutants that serve as leads for future work in understanding their basis and generality across Methylobacterium strains.


Assuntos
Redes e Vias Metabólicas/genética , Methylobacterium extorquens/genética , Metabolismo dos Carboidratos , Formaldeído/metabolismo , Formiatos/metabolismo , Genes Bacterianos , Metanol/metabolismo , Methylobacterium extorquens/crescimento & desenvolvimento , Oxirredução , Fenótipo , Ácido Succínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa