Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Bioinformatics ; 22(1): 611, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952565

RESUMO

BACKGROUND: Exogenous cDNA introduced into an experimental system, either intentionally or accidentally, can appear as added read coverage over that gene in next-generation sequencing libraries derived from this system. If not properly recognized and managed, this cross-contamination with exogenous signal can lead to incorrect interpretation of research results. Yet, this problem is not routinely addressed in current sequence processing pipelines. RESULTS: We present cDNA-detector, a computational tool to identify and remove exogenous cDNA contamination in DNA sequencing experiments. We demonstrate that cDNA-detector can identify cDNAs quickly and accurately from alignment files. A source inference step attempts to separate endogenous cDNAs (retrocopied genes) from potential cloned, exogenous cDNAs. cDNA-detector provides a mechanism to decontaminate the alignment from detected cDNAs. Simulation studies show that cDNA-detector is highly sensitive and specific, outperforming existing tools. We apply cDNA-detector to several highly-cited public databases (TCGA, ENCODE, NCBI SRA) and show that contaminant genes appear in sequencing experiments where they lead to incorrect coverage peak calls. CONCLUSIONS: cDNA-detector is a user-friendly and accurate tool to detect and remove cDNA detection in NGS libraries. This two-step design reduces the risk of true variant removal since it allows for manual review of candidates. We find that contamination with intentionally and accidentally introduced cDNAs is an underappreciated problem even in widely-used consortium datasets, where it can lead to spurious results. Our findings highlight the importance of sensitive detection and removal of contaminant cDNA from NGS libraries before downstream analysis.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Simulação por Computador , DNA Complementar/genética , Biblioteca Gênica , Análise de Sequência de DNA
2.
Blood ; 122(16): 2837-47, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23943653

RESUMO

PU-H71 is a purine-scaffold Hsp90 inhibitor that, in contrast to other Hsp90 inhibitors, displays unique selectivity for binding the fraction of Hsp90 that is preferentially associated with oncogenic client proteins and enriched in tumor cells (teHsp90). This property allows PU-H71 to potently suppress teHsp90 without inducing toxicity in normal cells. We found that lymphoma cells infected by Epstein-Barr virus or Kaposi sarcoma-associated herpes virus (KSHV) are exquisitely sensitive to this compound. Using PU-H71 affinity capture and proteomics, an unbiased approach to reveal oncogenic networks, we identified the teHsp90 interactome in KSHV(+) primary effusion lymphoma cells. Viral and cellular proteins were identified, including many involved in nuclear factor (NF)-κB signaling, apoptosis, and autophagy. KSHV vFLIP is a viral oncoprotein homologous to cFLIPs, with NF-κB-activating and antiapoptotic activities. We show that teHsp90 binds vFLIP but not cFLIPs. Treatment with PU-H71 induced degradation of vFLIP and IKKγ, NF-κB downregulation, apoptosis and autophagy in vitro, and more importantly, tumor responses in mice. Analysis of the interactome revealed apoptosis as a central pathway; therefore, we tested a BCL2 family inhibitor in primary effusion lymphoma cells. We found strong activity and synergy with PU-H71. Our findings demonstrate PU-H71 affinity capture identifies actionable networks that may help design rational combinations of effective therapies.


Assuntos
Benzodioxóis/química , Proteínas de Choque Térmico HSP90/metabolismo , Infecções por Herpesviridae/metabolismo , Neoplasias/metabolismo , Neoplasias/virologia , Purinas/química , Proteínas Virais/metabolismo , Animais , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Gammaherpesvirinae , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Camundongos , NF-kappa B/metabolismo , Transplante de Neoplasias , Proteoma , Proteômica/métodos , Transdução de Sinais
3.
JCO Precis Oncol ; 7: e2200532, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141550

RESUMO

PURPOSE: For patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC), first-line treatment is endocrine therapy (ET) plus cyclin-dependent kinase 4/6 inhibition (CDK4/6i). After disease progression, which often comes with ESR1 resistance mutations (ESR1-MUT), which therapies to use next and for which patients are open questions. An active area of exploration is treatment with further CDK4/6i, particularly abemaciclib, which has distinct pharmacokinetic and pharmacodynamic properties compared with the other approved CDK4/6 inhibitors, palbociclib and ribociclib. We investigated a gene panel to prognosticate abemaciclib susceptibility in patients with ESR1-MUT MBC after palbociclib progression. METHODS: We examined a multicenter retrospective cohort of patients with ESR1-MUT MBC who received abemaciclib after disease progression on ET plus palbociclib. We generated a panel of CDK4/6i resistance genes and compared abemaciclib progression-free survival (PFS) in patients without versus with mutations in this panel (CDKi-R[-] v CDKi-R[+]). We studied how ESR1-MUT and CDKi-R mutations affect abemaciclib sensitivity of immortalized breast cancer cells and patient-derived circulating tumor cell lines in culture. RESULTS: In ESR1-MUT MBC with disease progression on ET plus palbociclib, the median PFS was 7.0 months for CDKi-R(-) (n = 17) versus 3.5 months for CDKi-R(+) (n = 11), with a hazard ratio of 2.8 (P = .03). In vitro, CDKi-R alterations but not ESR1-MUT induced abemaciclib resistance in immortalized breast cancer cells and were associated with resistance in circulating tumor cells. CONCLUSION: For ESR1-MUT MBC with resistance to ET and palbociclib, PFS on abemaciclib is longer for patients with CDKi-R(-) than CDKi-R(+). Although a small and retrospective data set, this is the first demonstration of a genomic panel associated with abemaciclib sensitivity in the postpalbociclib setting. Future directions include testing and improving this panel in additional data sets, to guide therapy selection for patients with HR+/HER2- MBC.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Quinase 4 Dependente de Ciclina/genética , Estudos Retrospectivos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Progressão da Doença
4.
Clin Cancer Res ; 26(22): 5974-5989, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32723837

RESUMO

PURPOSE: To identify clinically relevant mechanisms of resistance to ER-directed therapies in ER+ breast cancer. EXPERIMENTAL DESIGN: We conducted a genome-scale functional screen spanning 10,135 genes to investigate genes whose overexpression confer resistance to selective estrogen receptor degraders. In parallel, we performed whole-exome sequencing in paired pretreatment and postresistance biopsies from 60 patients with ER+ metastatic breast cancer who had developed resistance to ER-targeted therapy. Furthermore, we performed experiments to validate resistance genes/pathways and to identify drug combinations to overcome resistance. RESULTS: Pathway analysis of candidate resistance genes demonstrated that the FGFR, ERBB, insulin receptor, and MAPK pathways represented key modalities of resistance. The FGFR pathway was altered via FGFR1, FGFR2, or FGF3 amplifications or FGFR2 mutations in 24 (40%) of the postresistance biopsies. In 12 of the 24 postresistance tumors exhibiting FGFR/FGF alterations, these alterations were acquired or enriched under the selective pressure of ER-directed therapy. In vitro experiments in ER+ breast cancer cells confirmed that FGFR/FGF alterations led to fulvestrant resistance as well as cross-resistance to the CDK4/6 inhibitor palbociclib. RNA sequencing of resistant cell lines demonstrated that FGFR/FGF induced resistance through ER reprogramming and activation of the MAPK pathway. The resistance phenotypes were reversed by FGFR inhibitors, a MEK inhibitor, and/or a SHP2 inhibitor. CONCLUSIONS: Our results suggest that FGFR pathway is a distinct mechanism of acquired resistance to ER-directed therapy that can be overcome by FGFR and/or MAPK pathway inhibitors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fator 3 de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Adulto , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fulvestranto/administração & dosagem , Fulvestranto/efeitos adversos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Mutação/genética , Metástase Neoplásica , Piperazinas/administração & dosagem , Piperazinas/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Receptores de Estrogênio/genética , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Discov ; 10(8): 1174-1193, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32404308

RESUMO

Mechanisms driving resistance to cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) in hormone receptor-positive (HR+) breast cancer have not been clearly defined. Whole-exome sequencing of 59 tumors with CDK4/6i exposure revealed multiple candidate resistance mechanisms including RB1 loss, activating alterations in AKT1, RAS, AURKA, CCNE2, ERBB2, and FGFR2, and loss of estrogen receptor expression. In vitro experiments confirmed that these alterations conferred CDK4/6i resistance. Cancer cells cultured to resistance with CDK4/6i also acquired RB1, KRAS, AURKA, or CCNE2 alterations, which conferred sensitivity to AURKA, ERK, or CHEK1 inhibition. Three of these activating alterations-in AKT1, RAS, and AURKA-have not, to our knowledge, been previously demonstrated as mechanisms of resistance to CDK4/6i in breast cancer preclinically or in patient samples. Together, these eight mechanisms were present in 66% of resistant tumors profiled and may define therapeutic opportunities in patients. SIGNIFICANCE: We identified eight distinct mechanisms of resistance to CDK4/6i present in 66% of resistant tumors profiled. Most of these have a therapeutic strategy to overcome or prevent resistance in these tumors. Taken together, these findings have critical implications related to the potential utility of precision-based approaches to overcome resistance in many patients with HR+ metastatic breast cancer.This article is highlighted in the In This Issue feature, p. 1079.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/uso terapêutico , Biópsia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Feminino , Genômica , Humanos , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas p21(ras) , Receptores de Esteroides/genética , Proteínas de Ligação a Retinoblastoma , Ubiquitina-Proteína Ligases , Sequenciamento do Exoma
6.
Nat Genet ; 51(2): 207-216, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30531871

RESUMO

Seventy percent of breast cancers express the estrogen receptor (ER), and agents that target the ER are the mainstay of treatment. However, virtually all people with ER+ breast cancer develop resistance to ER-directed agents in the metastatic setting. Beyond mutations in the ER itself, which occur in 25-30% of people treated with aromatase inhibitors1-4, knowledge about clinical resistance mechanisms remains incomplete. We identified activating HER2 mutations in metastatic biopsies from eight patients with ER+ metastatic breast cancer who had developed resistance to aromatase inhibitors, tamoxifen or fulvestrant. Examination of treatment-naive primary tumors in five patients showed no evidence of pre-existing mutations in four of five patients, suggesting that these mutations were acquired under the selective pressure of ER-directed therapy. The HER2 mutations and ER mutations were mutually exclusive, suggesting a distinct mechanism of acquired resistance to ER-directed therapies. In vitro analysis confirmed that the HER2 mutations conferred estrogen independence as well as-in contrast to ER mutations-resistance to tamoxifen, fulvestrant and the CDK4 and CDK6 inhibitor palbociclib. Resistance was overcome by combining ER-directed therapy with the irreversible HER2 kinase inhibitor neratinib.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mutação/genética , Receptor ErbB-2/genética , Receptores de Estrogênio/genética , Antineoplásicos Hormonais/farmacologia , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Fulvestranto/farmacologia , Células HEK293 , Humanos , Células MCF-7 , Mutação/efeitos dos fármacos , Piperazinas/farmacologia , Piridinas/farmacologia , Tamoxifeno/farmacologia
7.
J Clin Invest ; 127(6): 2066-2080, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28504647

RESUMO

Primary effusion lymphoma (PEL) is a largely incurable malignancy of B cell origin with plasmacytic differentiation. Here, we report the identification of a highly effective inhibitor of PEL. This compound, 6-ethylthioinosine (6-ETI), is a nucleoside analog with toxicity to PEL in vitro and in vivo, but not to other lymphoma cell lines tested. We developed and performed resistome analysis, an unbiased approach based on RNA sequencing of resistant subclones, to discover the molecular mechanisms of sensitivity. We found different adenosine kinase-inactivating (ADK-inactivating) alterations in all resistant clones and determined that ADK is required to phosphorylate and activate 6-ETI. Further, we observed that 6-ETI induces ATP depletion and cell death accompanied by S phase arrest and DNA damage only in ADK-expressing cells. Immunohistochemistry for ADK served as a biomarker approach to identify 6-ETI-sensitive tumors, which we documented for other lymphoid malignancies with plasmacytic features. Notably, multiple myeloma (MM) expresses high levels of ADK, and 6-ETI was toxic to MM cell lines and primary specimens and had a robust antitumor effect in a disseminated MM mouse model. Several nucleoside analogs are effective in treating leukemias and T cell lymphomas, and 6-ETI may fill this niche for the treatment of PEL, plasmablastic lymphoma, MM, and other ADK-expressing cancers.


Assuntos
Adenosina Quinase/metabolismo , Antineoplásicos/farmacologia , Linfoma de Efusão Primária/tratamento farmacológico , Nucleosídeos de Purina/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Concentração Inibidora 50 , Linfoma de Efusão Primária/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa