RESUMO
Data collected from large-scale studies has shown that the incidence of prostate cancer globally is on the rise, which could be attributed to an overall increase in lifespan. So, the question is how has modern science with all its new technologies and clinical breakthroughs mitigated or managed this disease? The answer is not a simple one as prostate cancer exhibits various subtypes, each with its unique characteristics or signatures which creates challenges in treatment. To understand the complexity of prostate cancer these signatures must be deciphered. Molecular studies of prostate cancer samples have identified certain genetic and epigenetic alterations, which are instrumental in tumorigenesis. Some of these candidates include the androgen receptor (AR), various oncogenes, tumor suppressor genes, and the tumor microenvironment, which serve as major drivers that lead to cancer progression. These aberrant genes and their products can give an insight into prostate cancer development and progression by acting as potent markers to guide future therapeutic approaches. Thus, understanding the complexity of prostate cancer is crucial for targeting specific markers and tailoring treatments accordingly.
Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Orquiectomia , Progressão da Doença , Microambiente TumoralRESUMO
Tribulus terrestris has significant antilithiatic efficacy established via both in vitro as well as in vivo studies and is used in numerous anti-urolithiatic herbal formulations viz. Cystone, Uriflow, Uritone and Neeri. However, to fully utilize its antilithiatic potential, the influence of different extraction parameters on antilithiatic ability of T. terrestris aqueous extract needs elucidation. Thus, the current study was undertaken using statistically optimized extraction conditions for aqueous extract preparation. Response surface methodology was employed to observe the influence of three variables i.e. temperature (°C), time (h) and solid: liquid ratio (S: L) on the extraction yield (%) and protein content (mg/g) of T. terrestris aqueous extract. RSM results revealed that the high S:L ratio, low temperature and reduced incubation time were optimal conditions for aqueous extraction. Under such extraction conditions the protein content reached the value of 26.6±1.22 mg/g and the obtained extraction yield was 27.32±1.62%. The assessment of antilithiatic activity of 4 selected extracts (AE1-4), revealed enhanced nucleation and aggregation inhibition of calcium oxalate crystals with AE1 and AE2, which in addition significantly altered the size and morphology of calcium oxalate monohydrate (COM) crystals compared to AE3 and AE4. In vitro cell culture based studies on renal epithelial cells (MDCK, NRK-52E and PK 15) proved that the AE1 showed higher cytoprotective potency by increasing cell viability as compared to the oxalate treated group. The free radical scavenging activity of aqueous extract lowered the reactive oxygen specie's induced damage and potentially reduced the signals of programmed cell death due to oxalate injury. In addition, modulation of the COM crystal morphology was enhanced by AE1 as compared to AE2. The FTIR and GC-MS analysis of AE1, showed the presence of biomolecules which could aid in the attenuation of lithiatic process. In the light of these results the utility of the RSM approach to fully optimize the antilithiatic potential of T. terrestris cannot be undermined.