Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Biol ; 19(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34911051

RESUMO

The sites of interaction between a cell and its surrounding microenvironment serve as dynamic signaling hubs that regulate cellular adaptations during developmental processes, immune functions, wound healing, cell migration, cancer invasion and metastasis, as well as in many other disease states. For most cell types, these interactions are established by integrin receptors binding directly to extracellular matrix proteins, such as the numerous collagens or fibronectin. For the cell, these points of contact provide vital cues by sampling environmental conditions, both chemical and physical. The overall regulation of this dynamic interaction involves both extracellular and intracellular components and can be highly variable. In this review, we highlight recent advances and hypotheses about the mechanisms and regulation of cell-ECM interactions, from the molecular to the tissue level, with a particular focus on cell migration. We then explore how cancer cell invasion and metastasis are deeply rooted in altered regulation of this vital interaction.


Assuntos
Matriz Extracelular , Integrinas , Adesão Celular , Comunicação Celular , Movimento Celular , Transdução de Sinais
2.
Int J Exp Pathol ; 100(3): 144-152, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31179622

RESUMO

This review describes how direct visualization of the dynamic interactions of cells with different extracellular matrix microenvironments can provide novel insights into complex biological processes. Recent studies have moved characterization of cell migration and invasion from classical 2D culture systems into 1D and 3D model systems, revealing multiple differences in mechanisms of cell adhesion, migration and signalling-even though cells in 3D can still display prominent focal adhesions. Myosin II restrains cell migration speed in 2D culture but is often essential for effective 3D migration. 3D cell migration modes can switch between lamellipodial, lobopodial and/or amoeboid depending on the local matrix environment. For example, "nuclear piston" migration can be switched off by local proteolysis, and proteolytic invadopodia can be induced by a high density of fibrillar matrix. Particularly, complex remodelling of both extracellular matrix and tissues occurs during morphogenesis. Extracellular matrix supports self-assembly of embryonic tissues, but it must also be locally actively remodelled. For example, surprisingly focal remodelling of the basement membrane occurs during branching morphogenesis-numerous tiny perforations generated by proteolysis and actomyosin contractility produce a microscopically porous, flexible basement membrane meshwork for tissue expansion. Cells extend highly active blebs or protrusions towards the surrounding mesenchyme through these perforations. Concurrently, the entire basement membrane undergoes translocation in a direction opposite to bud expansion. Underlying this slowly moving 2D basement membrane translocation are highly dynamic individual cell movements. We conclude this review by describing a variety of exciting research opportunities for discovering novel insights into cell-matrix interactions.


Assuntos
Membrana Basal/metabolismo , Movimento Celular/fisiologia , Matriz Extracelular/metabolismo , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Adesão Celular/fisiologia , Humanos
3.
Liver Int ; 38(6): 1074-1083, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29171144

RESUMO

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality. Risk factors for developing HCC include viral hepatitis, alcohol and obesity. Fatty acid-binding proteins (FABPs) bind long-chain free fatty acids (FFAs) and are expressed in a tissue-specific pattern; FABP1 being the predominant hepatic form, and FABP4 the predominant adipocyte form. The aims of this study were to investigate the expression and function of FABPs1-9 in human and animal models of obesity-related HCC. METHODS: FABP1-9 expression was determined in a mouse model of obesity-promoted HCC. Based on these data, expression and function of FABP4 was determined in human HCC cells (HepG2 and HuH7) in vitro. Serum from patients with different underlying hepatic pathologies was analysed for circulating FABP4 levels. RESULTS: Livers from obese mice, independent of tumour status, exhibited increased FABP4 mRNA and protein expression concomitant with elevated serum FABP4. In vitro, FABP4 expression was induced in human HCC cells by FFA treatment, and led to FABP4 release into culture medium. Treatment of HCC cells with exogenous FABP4 significantly increased proliferation and migration of human HCC cells. Patient serum analysis demonstrated significantly increased FABP4 in those with underlying liver disease, particularly non-alcoholic fatty liver disease (NAFLD) and HCC. CONCLUSIONS: These data suggest FABP4, an FABP not normally expressed in the liver, can be synthesized and secreted by hepatocytes and HCC cells, and that FABP4 may play a role in regulating tumour progression in the underlying setting of obesity.


Assuntos
Carcinoma Hepatocelular/patologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Neoplasias Hepáticas/patologia , Obesidade/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Modelos Animais de Doenças , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , RNA Mensageiro/análise , Fatores de Risco
4.
Alcohol Alcohol ; 52(6): 629-637, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036399

RESUMO

AIMS: This study sought to compare mice bred to preferentially consume high amounts of alcohol (crossed-high alcohol preferring, cHAP) to c57BL/6 (C57) mice using a chronic-binge ethanol ingestion model to induce alcoholic liver disease (ALD). METHODS: Male C57 and cHAP mice were randomized to a Lieber-DeCarli control (LDC) diet, Lieber-DeCarli 5% (v/v) ethanol (LDE) diet or free-choice between 10% (v/v) ethanol in drinking water (EtOH-DW) and DW. After 4 weeks mice were gavaged with either 9 g/kg maltose-dextrin (LDC+MD) or 5 g/kg EtOH (LDE+Binge, EtOH-DW+Binge). Nine hours later tissue and serum were collected and analyzed. RESULTS: cHAP mice on EtOH-DW consumed significantly more ethanol than cHAP or C57 mice maintained on LDE. However, cHAP and C57 mice on the LDE+Binge regiment had greater hepatosteatosis and overall degree of liver injury compared to EtOH-DW+Binge. Changes in pro-inflammatory gene expression was more pronounced in cHAP mice than C57 mice. Analysis of liver enzymes revealed a robust induction of CYP2E1 in C57 and cHAP mice maintained on EtOH-DW+Binge or LDE+Binge. However, while C57 mice exhibited higher basal hepatic glutathione than cHAP mice, these mice appeared more susceptible to oxidative stress following LDE+Binge than cHAP counterparts. CONCLUSIONS: Despite cHAP mice consuming more total ethanol prior to gavage when maintained on EtOH-DW, LDE followed by gavage created a more severe model of ALD in both C57 and cHAP mice. These data suggest factors other than total amount of alcohol consumed affect degree of ALD development in the chronic-binge model in cHAP mice. SHORT SUMMARY: cHAP mice voluntarily consume high amounts of ethanol and exhibited hepatic injury when subject to chronic-binge ethanol feeding with the Lieber-DeCarli diet. However, hepatic injury was reduced in cHAP mice in a chronic-binge model following voluntary high ethanol consumption in drinking water.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/genética , Modelos Animais de Doenças , Etanol/toxicidade , Hepatopatias Alcoólicas/genética , National Institute on Alcohol Abuse and Alcoholism (U.S.) , Animais , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/patologia , Etanol/administração & dosagem , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Estados Unidos
5.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887318

RESUMO

A basic process in cancer is the breaching of basement-membrane barriers to permit tissue invasion. Cancer cells can use proteases and physical mechanisms to produce initial holes in basement membranes, but how cells squeeze through this barrier into matrix environments is not well understood. We used a 3D invasion model consisting of cancer-cell spheroids encapsulated by a basement membrane and embedded in collagen to characterize the dynamic early steps in cancer-cell invasion across this barrier. We demonstrate that certain cancer cells extend exceptionally long (~30-100 µm) protrusions through basement membranes via actin and microtubule cytoskeletal function. These long protrusions use integrin adhesion and myosin II-based contractility to pull cells through the basement membrane for initial invasion. Concurrently, these long, organelle-rich protrusions pull surrounding collagen inward while propelling cancer cells outward through perforations in the basement-membrane barrier. These exceptionally long, contractile cellular protrusions can facilitate the breaching of the basement-membrane barrier as a first step in cancer metastasis.


Assuntos
Actinas , Colágeno , Humanos , Movimento Celular , Colágeno/metabolismo , Membrana Basal/metabolismo , Actinas/metabolismo , Invasividade Neoplásica
6.
Gels ; 8(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36135279

RESUMO

Cancer invasion through basement membranes represents the initial step of tumor dissemination and metastasis. However, little is known about how human cancer cells breach basement membranes. Here, we used a three-dimensional in vitro invasion model consisting of cancer spheroids encapsulated by a basement membrane and embedded in 3D collagen gels to visualize the early events of cancer invasion by confocal microscopy and live-cell imaging. Human breast cancer cells generated large numbers of basement membrane perforations, or holes, of varying sizes that expanded over time during cell invasion. We used a wide variety of small molecule inhibitors to probe the mechanisms of basement membrane perforation and hole expansion. Protease inhibitor treatment (BB94), led to a 63% decrease in perforation size. After myosin II inhibition (blebbistatin), the basement membrane perforation area decreased by only 15%. These treatments produced correspondingly decreased cellular breaching events. Interestingly, inhibition of actin polymerization dramatically decreased basement membrane perforation by 80% and blocked invasion. Our findings suggest that human cancer cells can primarily use proteolysis and actin polymerization to perforate the BM and to expand perforations for basement membrane breaching with a relatively small contribution from myosin II contractility.

7.
Curr Protoc Cell Biol ; 87(1): e105, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32436628

RESUMO

In the past, in vitro studies of invasion and tumor progression were performed primarily using cancer cells cultured on a flat, two-dimensional (2D) surface in a monolayer. In recent years, however, many studies have demonstrated differences in cell signaling and cell migration between 2D and 3D cell cultures. Traditional 2D monolayer cancer cell invasion models do not fully recapitulate 3D cell-to-cell and cell-to-extracellular matrix interactions that in vivo models can provide. Moreover, although in vivo animal models are irreplaceable for studying tumor biology and metastasis, they are costly, time-consuming, and impractical for answering preliminary questions. Thus, emergent and evolving 3D spheroid cell culture models have changed the way we study tumors and their interactions with their surrounding extracellular matrix. In the case of breast cancer, metastasis of breast cancer tumors results in high mortality rates, and thus development of robust cell culture models that are reproducible and practical for studying breast cancer progression is important for ultimately developing preventatives for cancer metastasis. This article provides a set of protocols for generating uniform spheroids with a thin sheet of basement membrane for studying the initial invasion of mammary epithelial cells into a surrounding collagen-rich extracellular matrix. Details are provided for generating 3D spheroids with a basement membrane, polymerizing collagen I, embedding the spheroids in the 3D collagen gel, and immunostaining the spheroids for invasion studies. Published 2020. U.S. Government. Basic Protocol 1: Growth of uniformly sized tumor spheroids with an encapsulating basement membrane Basic Protocol 2: Polymerization and embedding of tumor spheroids in a 3D type I collagen gel Alternate Protocol: Embedding of tumor spheroids in collagen gels using a sandwich method Basic Protocol 3: Fixing and immunostaining of tumor spheroids embedded in 3D collagen gels.


Assuntos
Membrana Basal/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Invasividade Neoplásica/patologia , Esferoides Celulares/patologia , Animais , Membrana Basal/patologia , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa