Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Brain Topogr ; 35(3): 322-336, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35262840

RESUMO

Most of the motor mapping procedures using navigated transcranial magnetic stimulation (nTMS) follow the conventional somatotopic organization of the primary motor cortex (M1) by assessing the representation of a particular target muscle, disregarding the possible coactivation of synergistic muscles. In turn, multiple reports describe a functional organization of the M1 with an overlapping among motor representations acting together to execute movements. In this context, the overlap degree among cortical representations of synergistic hand and forearm muscles remains an open question. This study aimed to evaluate the muscle coactivation and representation overlapping common to the grasping movement and its dependence on the stimulation parameters. The nTMS motor maps were obtained from one carpal muscle and two intrinsic hand muscles during rest. We quantified the overlapping motor maps in size (area and volume overlap degree) and topography (similarity and centroid Euclidean distance) parameters. We demonstrated that these muscle representations are highly overlapped and similar in shape. The overlap degrees involving the forearm muscle were significantly higher than only among the intrinsic hand muscles. Moreover, the stimulation intensity had a stronger effect on the size compared to the topography parameters. Our study contributes to a more detailed cortical motor representation towards a synergistic, functional arrangement of M1. Understanding the muscle group coactivation may provide more accurate motor maps when delineating the eloquent brain tissue during pre-surgical planning.


Assuntos
Córtex Motor , Mapeamento Encefálico/métodos , Potencial Evocado Motor/fisiologia , Antebraço/fisiologia , Mãos , Humanos , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana/métodos
2.
Stroke ; 52(1): 241-249, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33317414

RESUMO

BACKGROUND AND PURPOSE: Despite continuing efforts in the multimodal assessment of the motor system after stroke, conclusive findings on the complementarity of functional and structural metrics of the ipsilesional corticospinal tract integrity and the role of the contralesional hemisphere are still lacking. This research aimed to find the best combination of motor system metrics, allowing the classification of patients into 3 predefined groups of upper limb motor recovery. METHODS: We enrolled 35 chronic ischemic stroke patients (mean 47 [26-66] years old, 29 [6-58] months poststroke) with a single supratentorial lesion and unilateral upper extremity weakness. Patients were divided into 3 groups, depending on upper limb motor recovery: good, moderate, and bad. Nonparametric statistical tests and regression analysis were used to investigate the relationships among microstructural (fractional anisotropy (FA) ratio of the corticospinal tracts at the internal capsule (IC) level (classic method) and along the length of the tracts (Fréchet distance), and of the corpus callosum) and functional (motor evoked potentials [MEPs] for 2 hand muscles) motor system metrics. Stratification rules were also tested using a decision tree classifier. RESULTS: IC FA ratio in the IC and MEP absence were both equally discriminative of the bad motor outcome (96% accuracy). For the 3 recovery groups' classification, the best parameter combination was IC FA ratio and the Fréchet distance between the contralesional and ipsilesional corticospinal tract FA profiles (91% accuracy). No other metrics had any additional value for patients' classification. MEP presence differed for 2 investigated muscles. CONCLUSIONS: This study demonstrates that better separation between 3 motor recovery groups may be achieved when considering the similarity between corticospinal tract FA profiles along its length in addition to region of interest-based assessment and lesion load calculation. Additionally, IC FA ratio and MEP absence are equally important markers for poor recovery, while for MEP probing it may be important to investigate more than one hand muscle.


Assuntos
AVC Isquêmico/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Adulto , Idoso , Anisotropia , Doença Crônica , Imagem de Tensor de Difusão , Potencial Evocado Motor , Feminino , Lateralidade Funcional , Humanos , AVC Isquêmico/complicações , AVC Isquêmico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/diagnóstico por imagem , Transtornos dos Movimentos/etiologia , Debilidade Muscular/etiologia , Debilidade Muscular/fisiopatologia , Desempenho Psicomotor , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/fisiopatologia , Recuperação de Função Fisiológica , Extremidade Superior/fisiopatologia
3.
Hum Brain Mapp ; 42(8): 2508-2528, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33682975

RESUMO

The spatial accuracy of transcranial magnetic stimulation (TMS) may be as small as a few millimeters. Despite such great potential, navigated TMS (nTMS) mapping is still underused for the assessment of motor plasticity, particularly in clinical settings. Here, we investigate the within-limb somatotopy gradient as well as absolute and relative reliability of three hand muscle cortical representations (MCRs) using a comprehensive grid-based sulcus-informed nTMS motor mapping. We enrolled 22 young healthy male volunteers. Two nTMS mapping sessions were separated by 5-10 days. Motor evoked potentials were obtained from abductor pollicis brevis (APB), abductor digiti minimi, and extensor digitorum communis. In addition to individual MRI-based analysis, we studied normalized MNI MCRs. For the reliability assessment, we calculated intraclass correlation and the smallest detectable change. Our results revealed a somatotopy gradient reflected by APB MCR having the most lateral location. Reliability analysis showed that the commonly used metrics of MCRs, such as areas, volumes, centers of gravity (COGs), and hotspots had a high relative and low absolute reliability for all three muscles. For within-limb TMS somatotopy, the most common metrics such as the shifts between MCR COGs and hotspots had poor relative reliability. However, overlaps between different muscle MCRs were highly reliable. We, thus, provide novel evidence that inter-muscle MCR interaction can be reliably traced using MCR overlaps while shifts between the COGs and hotspots of different MCRs are not suitable for this purpose. Our results have implications for the interpretation of nTMS motor mapping results in healthy subjects and patients with neurological conditions.


Assuntos
Mapeamento Encefálico/normas , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana/normas , Adulto , Mapeamento Encefálico/métodos , Eletromiografia , Humanos , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
4.
Brain Topogr ; 30(6): 711-722, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28721533

RESUMO

Navigated transcranial magnetic stimulation (nTMS) can be applied to locate and outline cortical motor representations. This may be important, e.g., when planning neurosurgery or focused nTMS therapy, or when assessing plastic changes during neurorehabilitation. Conventionally, a cortical location is considered to belong to the motor cortex if the maximum electric field (E-field) targeted there evokes a motor-evoked potential in a muscle. However, the cortex is affected by a broad E-field distribution, which tends to broaden estimates of representation areas by stimulating also the neighboring areas in addition to the maximum E-field location. Our aim was to improve the estimation of nTMS-based motor maps by taking into account the E-field distribution of the stimulation pulse. The effect of the E-field distribution was considered by calculating the minimum-norm estimate (MNE) of the motor representation area. We tested the method on simulated data and then applied it to recordings from six healthy volunteers and one stroke patient. We compared the motor representation areas obtained with the MNE method and a previously introduced interpolation method. The MNE hotspots and centers of gravity were close to those obtained with the interpolation method. The areas of the maps, however, depend on the thresholds used for outlining the areas. The MNE method may improve the definition of cortical motor areas, but its accuracy should be validated by comparing the results with maps obtained with direct cortical stimulation of the cortex where the E-field distribution can be better focused.


Assuntos
Mapeamento Encefálico/métodos , Potencial Evocado Motor/fisiologia , Modelos Neurológicos , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
5.
Commun Biol ; 6(1): 416, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059824

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disease with no existing treatment leading to full recovery. The blood-brain barrier (BBB) breakdown usually precedes the advent of first symptoms in AD and accompanies the progression of the disease. At the same time deliberate BBB opening may be beneficial for drug delivery in AD. Non-invasive brain stimulation (NIBS) techniques, primarily transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have shown multiple evidence of being able to alleviate symptoms of AD. Currently, TMS/tDCS mechanisms are mostly investigated in terms of their neuronal effects, while their possible non-neuronal effects, including mitigation of the BBB disruption, are less studied. We argue that studies of TMS/tDCS effects on the BBB in AD are necessary to boost the effectiveness of neuromodulation in AD. Moreover, such studies are important considering the safety issues of TMS/tDCS use in the advanced AD stages when the BBB is usually dramatically deteriorated. Here, we elucidate the evidence of NIBS-induced BBB opening and closing in various models from in vitro to humans, and highlight its importance in AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Estimulação Transcraniana por Corrente Contínua , Humanos , Doença de Alzheimer/terapia , Barreira Hematoencefálica , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos
7.
J Neural Eng ; 19(6)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36541458

RESUMO

Objective.Transcranial magnetic stimulation (TMS) induces an electric field (E-field) in the cortex. To facilitate stimulation targeting, image-guided neuronavigation systems have been introduced. Such systems track the placement of the coil with respect to the head and visualize the estimated cortical stimulation location on an anatomical brain image in real time. The accuracy and precision of the neuronavigation is affected by multiple factors. Our aim was to analyze how different factors in TMS neuronavigation affect the accuracy and precision of the coil-head coregistration and the estimated E-field.Approach.By performing simulations, we estimated navigation errors due to distortions in magnetic resonance images (MRIs), head-to-MRI registration (landmark- and surface-based registrations), localization and movement of the head tracker, and localization of the coil tracker. We analyzed the effect of these errors on coil and head coregistration and on the induced E-field as determined with simplistic and realistic head models.Main results.Average total coregistration accuracies were in the range of 2.2-3.6 mm and 1°; precision values were about half of the accuracy values. The coregistration errors were mainly due to head-to-MRI registration with average accuracies 1.5-1.9 mm/0.2-0.4° and precisions 0.5-0.8 mm/0.1-0.2° better with surface-based registration. The other major source of error was the movement of the head tracker with average accuracy of 1.5 mm and precision of 1.1 mm. When assessed within an E-field method, the average accuracies of the peak E-field location, orientation, and magnitude ranged between 1.5 and 5.0 mm, 0.9 and 4.8°, and 4.4 and 8.5% across the E-field models studied. The largest errors were obtained with the landmark-based registration. When computing another accuracy measure with the most realistic E-field model as a reference, the accuracies tended to improve from about 10 mm/15°/25% to about 2 mm/2°/5% when increasing realism of the E-field model.Significance.The results of this comprehensive analysis help TMS operators to recognize the main sources of error in TMS navigation and that the coregistration errors and their effect in the E-field estimation depend on the methods applied. To ensure reliable TMS navigation, we recommend surface-based head-to-MRI registration and realistic models for E-field computations.


Assuntos
Encéfalo , Estimulação Magnética Transcraniana , Estimulação Magnética Transcraniana/métodos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Cabeça , Neuronavegação/métodos , Imageamento por Ressonância Magnética/métodos
8.
Front Pediatr ; 9: 626734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671580

RESUMO

Arthrogryposis multiplex congenita (AMC) has recently drawn substantial attention from researchers and clinicians. New effective surgical and physiotherapeutic methods have been developed to improve the quality of life of patients with AMC. While it is clear that all these interventions should strongly rely on the plastic reorganization of the central nervous system, almost no studies have investigated this topic. The present study demonstrates the feasibility of using magnetoencephalography (MEG) to investigate brain activity in young AMC patients. We also outlined the general challenges and limitations of electrophysiological investigations on patients with arthrogryposis. We conducted MEG recordings using a 306-channel Elekta Neuromag VectorView system during a cued motor task performance in four patients with arthrogryposis, five normally developed children, and five control adults. Following the voice command of the experimenter, each subject was asked to bring their hand toward their mouth to imitate the self-feeding process. Two patients had latissimus dorsi transferred to the biceps brachii position, one patient had a pectoralis major transferred to the biceps brachii position, and one patient had no elbow flexion restoration surgery before the MEG investigation. Three patients who had undergone autotransplantation prior to the MEG investigation demonstrated activation in the sensorimotor area contralateral to the elbow flexion movement similar to the healthy controls. One patient who was recorded before the surgery demonstrated subjectively weak distributed bilateral activation during both left and right elbow flexion. Visual inspection of MEG data suggested that neural activity associated with motor performance was less pronounced and more widely distributed across the cortical areas of patients than of healthy control subjects. In general, our results could serve as a proof of principle in terms of the application of MEG in studies on cortical activity in patients with AMC. Reported trends might be consistent with the idea that prolonged motor deficits are associated with more difficult neuronal recruitment and the spatial heterogeneity of neuronal sources, most likely reflecting compensatory neuronal mechanisms. On the practical side, MEG could be a valuable technique for investigating the neurodynamics of patients with AMC as a function of postoperative abilitation.

9.
PLoS One ; 16(9): e0257554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34550997

RESUMO

Besides stimulus intensities and interstimulus intervals (ISI), the electric field (E-field) orientation is known to affect both short-interval intracortical inhibition (SICI) and facilitation (SICF) in paired-pulse transcranial magnetic stimulation (TMS). However, it has yet to be established how distinct orientations of the conditioning (CS) and test stimuli (TS) affect the SICI and SICF generation. With the use of a multi-channel TMS transducer that provides electronic control of the stimulus orientation and intensity, we aimed to investigate how changes in the CS and TS orientation affect the strength of SICI and SICF. We hypothesized that the CS orientation would play a major role for SICF than for SICI, whereas the CS intensity would be more critical for SICI than for SICF. In eight healthy subjects, we tested two ISIs (1.5 and 2.7 ms), two CS and TS orientations (anteromedial (AM) and posteromedial (PM)), and four CS intensities (50, 70, 90, and 110% of the resting motor threshold (RMT)). The TS intensity was fixed at 110% RMT. The intensities were adjusted to the corresponding RMT in the AM and PM orientations. SICI and SICF were observed in all tested CS and TS orientations. SICI depended on the CS intensity in a U-shaped manner in any combination of the CS and TS orientations. With 70% and 90% RMT CS intensities, stronger PM-oriented CS induced stronger inhibition than weaker AM-oriented CS. Similar SICF was observed for any CS orientation. Neither SICI nor SICF depended on the TS orientation. We demonstrated that SICI and SICF could be elicited by the CS perpendicular to the TS, which indicates that these stimuli affected either overlapping or strongly connected neuronal populations. We concluded that SICI is primarily sensitive to the CS intensity and that CS intensity adjustment resulted in similar SICF for different CS orientations.


Assuntos
Potencial Evocado Motor/fisiologia , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Eletromiografia , Voluntários Saudáveis , Humanos , Masculino , Córtex Motor/fisiologia , Adulto Jovem
10.
Sci Rep ; 9(1): 12858, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492895

RESUMO

We applied transcranial alternating current stimulation (tACS) to the primary motor cortex (M1) at different frequencies during an index-thumb pinch-grip observation task. To estimate changes in the corticospinal output, we used the size of motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS) of M1 using an online MRI-guided simultaneous TMS-tACS approach. The results of the beta-tACS confirm a non-selective increase in corticospinal excitability in subjects at rest; an increase was observed for both of the tested hand muscles, the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM). However, during action observation of the pinch-grip movement, the increase of corticospinal excitability was only observed for the prime mover FDI muscle and took place during alpha-tACS, while gamma-tACS affected both the FDI and control muscle (ADM) responses. These phenomena likely reflect the hypothesis that the mu and gamma rhythms specifically index the downstream modulation of primary sensorimotor areas by engaging mirror neuron activity. The current neuromodulation approach confirms that tACS can be used to induce neurophysiologically detectable state-dependent enhancement effects, even in complex motor-cognitive tasks.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Tratos Piramidais/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Adulto , Eletromiografia/métodos , Feminino , Ritmo Gama , Humanos , Masculino , Neurônios Motores/fisiologia , Movimento/fisiologia , Córtex Sensório-Motor/fisiologia
11.
Sci Rep ; 9(1): 18046, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31772256

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Front Hum Neurosci ; 12: 239, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038562

RESUMO

The use of the MRI-navigation system ensures accurate targeting of TMS. This, in turn, results in TMS motor mapping becoming a routinely used procedure in neuroscience and neurosurgery. However, currently, there is no standardized methodology for assessment of TMS motor-mapping results. Therefore, we developed TMSmap-free standalone graphical interface software for the quantitative analysis of the TMS motor mapping results (http://tmsmap.ru/). In addition to the estimation of standard parameters (such as the size of cortical muscle representation and the center of gravity location), it allows estimation of the volume of cortical representations, excitability profile of the cortical surface map, and the overlap between cortical representations. The input data for the software includes the coordinates of the coil position (or electric field maximum) and the corresponding response in each stimulation point. TMSmap has been developed for versatile assessment and comparison of TMS maps relating to different experimental interventions including, but not limited to longitudinal, pharmacological and clinical studies (e.g., stroke recovery). To illustrate the use of TMSmap we provide examples of the actual TMS motor-mapping analysis of two healthy subjects and one chronic stroke patient.

14.
J Vis Exp ; (127)2017 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-28994763

RESUMO

Transcranial Alternating Current Stimulation (tACS) is a neuromodulatory technique able to act through sinusoidal electrical waveforms in a specific frequency and in turn modulate ongoing cortical oscillatory activity. This neurotool allows the establishment of a causal link between endogenous oscillatory activity and behavior. Most of the tACS studies have shown online effects of tACS. However, little is known about the underlying action mechanisms of this technique because of the AC-induced artifacts on Electroencephalography (EEG) signals. Here we show a unique approach to investigate online physiological frequency-specific effects of tACS of the primary motor cortex (M1) by using single pulse Transcranial Magnetic Stimulation (TMS) to probe cortical excitability changes. In our setup, the TMS coil is placed over the tACS electrode while Motor Evoked Potentials (MEPs) are collected to test the effects of the ongoing M1-tACS. So far, this approach has mainly been used to study the visual and motor systems. However, the current tACS-TMS setup can pave the way for future investigations of cognitive functions. Therefore, we provide a step-by-step manual and video guidelines for the procedure.


Assuntos
Internet , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Humanos
15.
Front Hum Neurosci ; 10: 504, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774060

RESUMO

Inter- and intra-subject variability of the motor evoked potentials (MEPs) to TMS is a well-known phenomenon. Although a possible link between this variability and ongoing brain oscillations was demonstrated, the results of the studies are not consistent with each other. Exploring this topic further is important since the modulation of MEPs provides unique possibility to relate oscillatory cortical phenomena to the state of the motor cortex probed with TMS. Given that alpha oscillations were shown to reflect cortical excitability, we hypothesized that their power and variability might explain the modulation of subject-specific MEPs to single- and paired-pulse TMS (spTMS, ppTMS, respectively). Neuronal activity was recorded with multichannel electroencephalogram. We used spTMS and two ppTMS conditions: intracortical facilitation (ICF) and short-interval intracortical inhibition (SICI). Spearman correlations were calculated within and across subjects between MEPs and the pre-stimulus power of alpha oscillations in low (8-10 Hz) and high (10-12 Hz) frequency bands. Coefficient of quartile variation was used to measure variability. Across-subject analysis revealed no difference in the pre-stimulus alpha power among the TMS conditions. However, the variability of high-alpha power in spTMS condition was larger than in the SICI condition. In ICF condition pre-stimulus high-alpha power variability correlated positively with MEP amplitude variability. No correlation has been observed between the pre-stimulus alpha power and MEP responses in any of the conditions. Our results show that the variability of the alpha oscillations can be more predictive of TMS effects than the commonly used power of oscillations and we provide further support for the dissociation of high and low-alpha bands in predicting responses produced by the stimulation of the motor cortex.

16.
Neuroscience ; 331: 109-19, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27318302

RESUMO

While variability of the motor responses to transcranial magnetic stimulation (TMS) is widely acknowledged, little is known about its central origin. One plausible explanation for such variability may relate to different neuronal states defining the reactivity of the cortex to TMS. In this study intrinsic spatio-temporal neuronal dynamics were estimated with Long-Range Temporal Correlations (LRTC) in order to predict the inter-individual differences in the strength of intra-cortical facilitation (ICF) and short-interval intracortical inhibition (SICI) produced by paired-pulse TMS (ppTMS) of the left primary motor cortex. LRTC in the alpha frequency range were assessed from multichannel electroencephalography (EEG) obtained at rest before and after the application of and single-pulse TMS (spTMS) and ppTMS protocols. For the EEG session, preceding TMS application, we showed a positive correlation across subjects between the strength of ICF and LRTC in the fronto-central and parietal areas. This in turn attests to the existence of subject-specific neuronal phenotypes defining the reactivity of the brain to ppTMS. In addition, we also showed that ICF was associated with the changes in neuronal dynamics in the EEG session after the application of the stimulation. This result provides a complementary evidence for the recent findings demonstrating that the cortical stimulation with sparse non-regular stimuli might have considerable long-lasting effects on the cortical activity.


Assuntos
Ritmo alfa/fisiologia , Córtex Motor/fisiologia , Adulto , Eletroencefalografia , Eletromiografia , Potencial Evocado Motor/fisiologia , Feminino , Mãos/fisiologia , Humanos , Masculino , Músculo Esquelético/fisiologia , Inibição Neural/fisiologia , Fatores de Tempo , Estimulação Magnética Transcraniana , Adulto Jovem
17.
Nat Genet ; 47(1): 78-83, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25420145

RESUMO

Cervical artery dissection (CeAD), a mural hematoma in a carotid or vertebral artery, is a major cause of ischemic stroke in young adults although relatively uncommon in the general population (incidence of 2.6/100,000 per year). Minor cervical traumas, infection, migraine and hypertension are putative risk factors, and inverse associations with obesity and hypercholesterolemia are described. No confirmed genetic susceptibility factors have been identified using candidate gene approaches. We performed genome-wide association studies (GWAS) in 1,393 CeAD cases and 14,416 controls. The rs9349379[G] allele (PHACTR1) was associated with lower CeAD risk (odds ratio (OR) = 0.75, 95% confidence interval (CI) = 0.69-0.82; P = 4.46 × 10(-10)), with confirmation in independent follow-up samples (659 CeAD cases and 2,648 controls; P = 3.91 × 10(-3); combined P = 1.00 × 10(-11)). The rs9349379[G] allele was previously shown to be associated with lower risk of migraine and increased risk of myocardial infarction. Deciphering the mechanisms underlying this pleiotropy might provide important information on the biological underpinnings of these disabling conditions.


Assuntos
Alelos , Dissecação da Artéria Carótida Interna/genética , Proteínas dos Microfilamentos/genética , Polimorfismo de Nucleotídeo Único , Dissecação da Artéria Vertebral/genética , Adulto , Isquemia Encefálica/epidemiologia , Isquemia Encefálica/genética , Dissecação da Artéria Carótida Interna/epidemiologia , Feminino , Finlândia/epidemiologia , Seguimentos , Pleiotropia Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hipercolesterolemia/epidemiologia , Hipertensão/epidemiologia , Masculino , Proteínas dos Microfilamentos/fisiologia , Pessoa de Meia-Idade , Transtornos de Enxaqueca/epidemiologia , Infarto do Miocárdio/epidemiologia , Obesidade/epidemiologia , Razão de Chances , Fatores de Risco , Dissecação da Artéria Vertebral/epidemiologia
19.
Front Hum Neurosci ; 8: 725, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309398

RESUMO

Although cerebral palsy (CP) is among the most common causes of physical disability in early childhood, we know little about the functional and structural changes of this disorder in the developing brain. Here, we investigated with three different neuroimaging modalities [magnetoencephalography (MEG), diffusion tensor imaging (DTI), and resting-state fMRI] whether spastic CP is associated with functional and anatomical abnormalities in the sensorimotor network. Ten children participated in the study: four with diplegic CP (DCP), three with hemiplegic CP (HCP), and three typically developing (TD) children. Somatosensory (SS)-evoked fields (SEFs) were recorded in response to pneumatic stimuli applied to digits D1, D3, and D5 of both hands. Several parameters of water diffusion were calculated from DTI between the thalamus and the pre-central and post-central gyri in both hemispheres. The sensorimotor resting-state networks (RSNs) were examined by using an independent component analysis method. Tactile stimulation of the fingers elicited the first prominent cortical response at ~50 ms, in all except one child, localized over the primary SS cortex (S1). In five CP children, abnormal somatotopic organization was observed in the affected (or more affected) hemisphere. Euclidean distances were markedly different between the two hemispheres in the HCP children, and between DCP and TD children for both hemispheres. DTI analysis revealed decreased fractional anisotropy and increased apparent diffusion coefficient for the thalamocortical pathways in the more affected compared to less affected hemisphere in CP children. Resting-state functional MRI results indicated absent and/or abnormal sensorimotor RSNs for children with HCP and DCP consistent with the severity and location of their lesions. Our findings suggest an abnormal SS processing mechanism in the sensorimotor network of children with CP possibly as a result of diminished thalamocortical projections.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa