Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 21(1): 62-70, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29895858

RESUMO

PURPOSE: Fanconi anemia (FA) genes play important roles in spermatogenesis. In mice, disruption of Fancm impairs male fertility and testicular integrity, but whether FANCM pathogenic variants (PV) similarly affect fertility in men is unknown. Here we characterize a Pakistani family having three infertile brothers, two manifesting oligoasthenospermia and one exhibiting azoospermia, born to first-cousin parents. A homozygous PV in FANCM (c.1946_1958del, p.P648Lfs*16) was found cosegregating with male infertility. Our objective is to validate that FANCM p.P648Lfs*16 is the PV causing infertility in this family. METHODS: Exome and Sanger sequencing were used for PV screening. DNA interstrand crosslink (ICL) sensitivity was assessed in lymphocytes from patients. A mouse model carrying a PV nearly equivalent to that in the patients (FancmΔC/ΔC) was generated, followed by functional analysis in spermatogenesis. RESULTS: The loss-of-function FANCM PV increased ICL sensitivity in lymphocytes of patients and FancmΔC/ΔC spermatogonia. Adult FancmΔC/ΔC mice showed spermatogenic failure, with germ cell loss in 50.2% of testicular tubules and round-spermatid maturation arrest in 43.5% of tubules. In addition, neither bone marrow failure nor cancer/tumor was detected in all the patients or adult FancmΔC/ΔC mice. CONCLUSION: These findings revealed male infertility to be a novel phenotype of human patients with a biallelic FANCM PV.


Assuntos
DNA Helicases/genética , Predisposição Genética para Doença , Infertilidade Masculina/genética , Espermatogênese/genética , Adulto , Animais , Mutação da Fase de Leitura , Homozigoto , Humanos , Infertilidade Masculina/patologia , Mutação com Perda de Função/genética , Masculino , Camundongos , Oligospermia/genética , Oligospermia/patologia , Linhagem , Fenótipo , Testículo/patologia
2.
Genet Med ; 21(1): 266, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30158692

RESUMO

Hao Win, Hui Ma and Sajjad Hussain were incorrectly affiliated to 'Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA'. These authors should only have been affiliated to 'Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China'. They were also not noted as contributing equally to the paper. Both these errors have now been corrected in the PDF and HTML versions of the paper.

3.
Genes (Basel) ; 10(12)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779270

RESUMO

Testis cords are the embryonic precursors of the seminiferous tubules. Development of testis cords is a key event during embryonic testicular morphogenesis and is regulated by multiple signaling molecules produced by Sertoli cells. However, the exact nature and the cascade of molecular events underlying testis cord development remain to be uncovered. In the current study, we explored the role of DNA damage binding protein 1 (DDB1) in Sertoli cells during mouse testis cord development. The genetic ablation of Ddb1 specifically in Sertoli cells resulted in the compromised Sertoli cell proliferation and disruption of testis cord remodeling in neonatal mice. This testicular dysgenesis persisted through adulthood, resulting in smaller testis and low sperm production. Mechanistically, we observed that the DDB1 degradation can stabilize SET domain-containing lysine methyltransferase 8 (SET8), which subsequently decreases the phosphorylation of SMAD2, an essential intracellular component of transforming growth factor beta (TGFß) signaling. Taken together, our results suggest an essential role of Ddb1 in Sertoli cell proliferation and normal remodeling of testis cords via TGFß pathway. To our knowledge, this is the first upstream regulators of TGFß pathway in Sertoli cells, and therefore it furthers our understanding of testis cord development.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células de Sertoli/citologia , Cordão Espermático/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Proliferação de Células , Deleção de Genes , Masculino , Camundongos , Células de Sertoli/metabolismo , Transdução de Sinais , Cordão Espermático/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa