Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(3): 296-304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498245

RESUMO

This study was conducted to ascertain the negative effects of dietary low-density polyethylene microplastics (LDPE-MPs) exposure on growth, nutrient digestibility, body composition and gut histology of Nile tilapia (Oreochromis niloticus). Six sunflower meal-based diets (protein 30.95%; fat 8.04%) were prepared; one was the control (0%) and five were incorporated with LDPE-MPs at levels of 2, 4, 6, 8 and 10% in sunflower meal-based diets. A total of eighteen experimental tanks, each with 15 fingerlings, were used in triplicates. Fish were fed at the rate of 5% biomass twice a day for 60 days. Results revealed that best values of growth, nutrient digestibility, body composition and gut histology were observed by control diet, while 10% exposure to LDPE-MPs significantly (P < 0.05) reduced weight gain (WG%, 85.04%), specific growth rate (SGR%, 0.68%), and increased FCR (3.92%). The findings showed that higher level of LDPE-MPs (10%) exposure in the diet of O. niloticus negatively affects nutrient digestibility. Furthermore, the results revealed that the higher concentration of LDPE-MPs (10%) had a detrimental impact on crude protein (11.92%) and crude fat (8.04%). A high number of histological lesions were seen in gut of fingerlings exposed to LDPE-MPs. Hence, LDPE-MPs potentially harm the aquatic health.


Assuntos
Ciclídeos , Animais , Polietileno/toxicidade , Microplásticos/metabolismo , Plásticos , Exposição Dietética/efeitos adversos , Dieta , Nutrientes , Ração Animal/análise , Suplementos Nutricionais
2.
Mar Drugs ; 20(3)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35323507

RESUMO

This review highlights the underexplored potential and promises of marine bioactive peptides (MBPs) with unique structural, physicochemical, and biological activities to fight against the current and future human pathologies. A particular focus is given to the marine environment as a significant source to obtain or extract high-value MBPs from touched/untouched sources. For instance, marine microorganisms, including microalgae, bacteria, fungi, and marine polysaccharides, are considered prolific sources of amino acids at large, and peptides/polypeptides in particular, with fundamental structural sequence and functional entities of a carboxyl group, amine, hydrogen, and a variety of R groups. Thus, MBPs with tunable features, both structural and functional entities, along with bioactive traits of clinical and therapeutic value, are of ultimate interest to reinforce biomedical settings in the 21st century. On the other front, as the largest biome globally, the marine biome is the so-called "epitome of untouched or underexploited natural resources" and a considerable source with significant potentialities. Therefore, considering their biological and biomedical importance, researchers around the globe are redirecting and/or regaining their interests in valorizing the marine biome-based MBPs. This review focuses on the widespread bioactivities of MBPs, FDA-approved MBPs in the market, sustainable development goals (SDGs), and legislation to valorize marine biome to underlying the impact role of bioactive elements with the related pathways. Finally, a detailed overview of current challenges, conclusions, and future perspectives is also given to satisfy the stimulating demands of the pharmaceutical sector of the modern world.


Assuntos
Organismos Aquáticos , Produtos Biológicos , Peptídeos , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Aprovação de Drogas , Ecossistema , Humanos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Desenvolvimento Sustentável , Estados Unidos , United States Food and Drug Administration
3.
Dose Response ; 19(4): 15593258211044062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658685

RESUMO

PURPOSE: The secondary metabolites in plants are the basis of defense and stress balance, which is an important aspect in plant growth. The UV-B treatment (a biotic stress) and salt stress on bitter melon (Momordica charantia L.) were studied, and the impact of pre-sowing seed treatment was evaluated on the basis of biochemical and enzymatic biomarkers, antioxidants, and wound-healing potential during early growth stages. METHODS: The UV-B treatment for 5 and 10 min and salt stress 250 mM and 500 mM treatments were applied, and 21-day seedling tissue were collected for total phenolic contents (TPC), total flavonoid contents (TFC), antioxidant, chlorophyll contents, hydrogen peroxide, total soluble sugar, enzymes activities, and wound-healing potential studies. RESULTS: The TPC, TFC, diphenyl picrylhydrazyl (DPPH), chlorophyll contents, and total soluble sugar were recorded higher at 5 min treatment with UV-B and salt stress at 250 mM concentration. Antioxidant enzymes activities were recorded higher for 10 min UV-B treatment and 500 mM salt treatment. Wound-healing potential was found significant at 5 min treatment with UV-B radiation, which was studied in vivo in rabbits. The LC-MS analysis revealed a variety of phenolic compounds in the seedlings. CONCLUSION: The study concluded that treatments significantly affect the biological activities of bitter melon seeds at the seedling stage, and the seeds contain important phenolic compounds responsible for its antioxidant potential and enzymatic activities. Future studies could be focused on the later stages of growth, development, and yield characteristics subjected to salt stress along with UV-B radiation treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa