Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013171

RESUMO

Recent advancements in biomedicine have focused on designing novel and stable interfaces that can drive a specific cellular response toward the requirements of medical devices or implants. Among these, in recent years, electroactive polymers (i.e., polyvinylidene fluoride or PVDF) have caught the attention within the biomedical applications sector, due to their insolubility, stability in biological media, in vitro and in vivo non-toxicity, or even piezoelectric properties. However, the main disadvantage of PVDF-based bio-interfaces is related to the absence of the functional groups on the fluoropolymer and their hydrophobic character leading to a deficiency of cell adhesion and proliferation. This work was aimed at obtaining hydrophilic functional PVDF polymer coatings by using, for the first time, the one-step, matrix-assisted pulsed evaporation (MAPLE) method, testing the need of a post-deposition thermal treatment and analyzing their preliminary capacity to support MC3T3-E1 pre-osteoblast cell survival. As osteoblast cells are known to prefer rough surfaces, MAPLE deposition parameters were studied for obtaining coatings with roughness of tens to hundreds of nm, while maintaining the chemical properties similar to those of the pristine material. The in vitro studies indicated that all surfaces supported the survival of viable osteoblasts with active metabolisms, similar to the "control" sample, with no major differences regarding the thermally treated materials; this eliminates the need to use a secondary step for obtaining hydrophilic PVDF coatings. The physical-chemical characteristics of the thin films, along with the in vitro analyses, suggest that MAPLE is an adequate technique for fabricating PVDF thin films for further bio-applications.


Assuntos
Técnicas de Química Sintética , Osteoblastos/efeitos dos fármacos , Polivinil/farmacologia , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dimetil Sulfóxido/farmacologia , Calefação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Polivinil/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa