Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 6(3): 035016, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33438661

RESUMO

High-energy photons are being used to treat different kinds of cancer, but it may increase the rate of secondary cancers due to the neutron contamination as well as over exposing of patients and medical staffs in radiation therapy Takam, Bezak, Marcu, and Yeoh, 2011, Radiation Research, 176, 508-520. Due to some difficulties in experimental measurements of neutron contamination, Monte Carlo method is an efficient tool to investigate dose parameters and characteristics in new techniques. The 18-MV photon beam of linac and circular cones have been simulated by MCNP5 code. Various parameters of photon and neutron including mean energy, flux, KERMA, the number of particles crossing a surface at a distance of 100 cm (SSD = 100 cm) as well as the change in photon and neutron spectrum as well as in intensity through the transmission in the circular collimators have been investigated. The results of this study show that the use of a circular collimator decreases neutron dose in the central axis, which is an advantage, but neutron contamination inducing small neutron dose is distributed all over the space. On the surface of phantom, photon dose rate is approximately equal to 3.41E7 (mGy/mA.min) for different collimators, but the neutron dose rate is 1.64E2 (mGy/ mA.min), 2.03E2 (mGy/ mA.min) and 2.52E2 (mGy/mA.min) for diameters of 12, 20 and 40 mm, respectively and it decreases by decreasing the diameter of the collimator. The neutron dose rate decreases from 9.68E7 and 9.74E7 (mGy/min.mA) for open field size 33 cm2 and 55 cm2 to 1.64E2 (mGy/min.mA), 2.02E2 (mGy/min.mA) and 2.52E2 (mGy/min.mA) for collimator diameter of 12 mm, 20 mm and 40 mm. It can be concluded that the use of circular collimators has an advantage of reducing neutron dose in the central axis. It should be mentioned that the off-axis neutron dose surrounding the collimator can be eliminated using an external neutron shield without perturbing the treatment field.


Assuntos
Nêutrons , Fótons , Radiocirurgia/instrumentação , Radiocirurgia/métodos , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Espalhamento de Radiação
2.
Biomed Phys Eng Express ; 7(1)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35037902

RESUMO

Objective: MR-linac machines are being developed for image-guided radiation therapy but the magnetic field of such machines could affect dose distributions. The purpose of this work was to evaluate the effect of a magnetic field on linac beam dosimetric parameters including penumbra for circular cones used in radiosurgery.Methods: Monte Carlo simulation was conducted for a linac machine with circular cones at 6 MV beam. A homogenous magnetic field of 1.5 T was applied transversely and parallel to the radiation beam. Percentage depth dose (PDD) and beam profiles in a water phantom with and without the magnetic field were calculated.Results: The results have shown that when the magnetic field is applied transversely, the PDDs in the water phantom differ in the buildup region and distant part of PDD curves. The beam profiles at three different depths are all significantly different from those without the magnetic field. The penumbra is greater when a magnetic field has been applied.Conclusion: Linear accelerator-based SRT and SRS use small circular cones. The beam penumbra for these cones can change in the presence of a magnetic field. The perturbation of dose distribution has been also observed in a patient plan due to the presence of a magnetic field. The results of this study show that dose distributions in the presence of a magnetic field must be considered for MR-guided radiotherapy treatments.


Assuntos
Radiocirurgia , Humanos , Campos Magnéticos , Aceleradores de Partículas , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa