Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Gastroenterology ; 162(3): 907-919.e10, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34863788

RESUMO

BACKGROUND & AIMS: Owing to the high load of immunogenic frameshift neoantigens, tumors arising in individuals with Lynch syndrome (LS), the most common inherited colorectal cancer (CRC) syndrome, are characterized by a pronounced immune infiltration. However, the immune status of normal colorectal mucosa in LS is not well characterized. We assessed the immune infiltrate in tumor-distant normal colorectal mucosa from LS CRC patients, sporadic microsatellite-unstable (MSI) and microsatellite-stable (MSS) CRC patients, and cancer-free LS carriers. METHODS: CD3-positive, FOXP3-positive, and CD8-positive T cells were quantified in, respectively, 219, 233, and 201 formalin-fixed paraffin-embedded (FFPE) normal colonic mucosa tissue sections from CRC patients and cancer-free LS carriers and 26, 22, and 19 LS CRCs. CD3-positive T cells were also quantified in an independent cohort of 97 FFPE normal rectal mucosa tissue sections from LS carriers enrolled in the CAPP2 clinical trial. The expression of 770 immune-relevant genes was analyzed in a subset of samples with the use of the NanoString nCounter platform. RESULTS: LS normal mucosa specimens showed significantly elevated CD3-, FOXP3-, and CD8-positive T-cell densities compared with non-LS control specimens. Gene expression profiling and cluster analysis revealed distinct immune profiles in LS carrier mucosa with and without cancer manifestation. Long-term follow-up of LS carriers within the CAPP2 trial found a correlation between mucosal T-cell infiltrate and time to subsequent tumor occurrence. CONCLUSIONS: LS carriers show elevated mucosal T-cell infiltration even in the absence of cancer. The normal mucosa immune profile may be a temporary or permanent tumor risk modifier in LS carriers.


Assuntos
Carcinoma/imunologia , Colo/imunologia , Neoplasias Colorretais Hereditárias sem Polipose/imunologia , Mucosa Intestinal/imunologia , Reto/imunologia , Linfócitos T/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Complexo CD3/metabolismo , Linfócitos T CD8-Positivos/patologia , Carcinoma/genética , Carcinoma/patologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Proteínas de Ligação a DNA/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Heterozigoto , Humanos , Mucosa Intestinal/patologia , Contagem de Linfócitos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Linfócitos T/patologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Transcriptoma , Adulto Jovem
2.
Gastroenterology ; 161(4): 1288-1302.e13, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34224739

RESUMO

BACKGROUND & AIMS: DNA mismatch repair deficiency drives microsatellite instability (MSI). Cells with MSI accumulate numerous frameshift mutations. Frameshift mutations affecting cancer-related genes may promote tumorigenesis and, therefore, are shared among independently arising MSI tumors. Consequently, such recurrent frameshift mutations can give rise to shared immunogenic frameshift peptides (FSPs) that represent ideal candidates for a vaccine against MSI cancer. Pathogenic germline variants of mismatch repair genes cause Lynch syndrome (LS), a hereditary cancer syndrome affecting approximately 20-25 million individuals worldwide. Individuals with LS are at high risk of developing MSI cancer. Previously, we demonstrated safety and immunogenicity of an FSP-based vaccine in a phase I/IIa clinical trial in patients with a history of MSI colorectal cancer. However, the cancer-preventive effect of FSP vaccination in the scenario of LS has not yet been demonstrated. METHODS: A genome-wide database of 488,235 mouse coding mononucleotide repeats was established, from which a set of candidates was selected based on repeat length, gene expression, and mutation frequency. In silico prediction, in vivo immunogenicity testing, and epitope mapping was used to identify candidates for FSP vaccination. RESULTS: We identified 4 shared FSP neoantigens (Nacad [FSP-1], Maz [FSP-1], Senp6 [FSP-1], Xirp1 [FSP-1]) that induced CD4/CD8 T cell responses in naïve C57BL/6 mice. Using VCMsh2 mice, which have a conditional knockout of Msh2 in the intestinal tract and develop intestinal cancer, we showed vaccination with a combination of only 4 FSPs significantly increased FSP-specific adaptive immunity, reduced intestinal tumor burden, and prolonged overall survival. Combination of FSP vaccination with daily naproxen treatment potentiated immune response, delayed tumor growth, and prolonged survival even more effectively than FSP vaccination alone. CONCLUSIONS: Our preclinical findings support a clinical strategy of recurrent FSP neoantigen vaccination for LS cancer immunoprevention.


Assuntos
Antígenos de Neoplasias/farmacologia , Vacinas Anticâncer/farmacologia , Neoplasias Colorretais Hereditárias sem Polipose/tratamento farmacológico , Mutação da Fase de Leitura , Fenômenos Imunogenéticos , Fragmentos de Peptídeos/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/imunologia , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Epitopos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Homóloga a MutS/genética , Naproxeno/farmacologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral , Vacinação , Eficácia de Vacinas
3.
Cancer Immunol Immunother ; 62(1): 27-37, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22729559

RESUMO

High-level microsatellite-unstable (MSI-H) colorectal carcinomas (CRC) represent a distinct subtype of tumors commonly characterized by dense infiltration with cytotoxic T cells, most likely due to expression of MSI-H-related frameshift peptides (FSP). The contribution of FSP and classical antigens like MUC1 and CEA to the cellular immune response against MSI-H CRC had not been analyzed so far. We analyzed tumor-infiltrating and peripheral T cells from MSI-H (n = 4 and n = 14, respectively) and microsatellite-stable (MSS) tumor patients (n = 26 and n = 17) using interferon gamma ELISpot assays. Responses against 4 FSP antigens and peptides derived from MUC1 to CEA were compared with and without depletion of regulatory T cells, and the results were related to the presence of the respective antigens in tumor tissue. Preexisting FSP-specific T cell responses were detected in all (4 out of 4) tumor-infiltrating and in the majority (10 out of 14) of peripheral T cell samples from MSI-H CRC patients, but rarely observed in MSS CRC patients. Preexisting T cell responses in MSI-H CRC patients were significantly more frequently directed against FSP tested in the present study than against peptides derived from classical antigens MUC1 or CEA (p = 0.049). Depletion of regulatory T cells increased the frequency of effector T cell responses specific for MUC1/CEA-derived peptides and, to a lesser extent, T cell responses specific for FSP. Our data suggest that the analyzed FSP may represent an immunologically relevant pool of antigens capable of eliciting antitumoral effector T cell responses.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Mutação da Fase de Leitura/genética , Linfócitos do Interstício Tumoral/imunologia , Instabilidade de Microssatélites , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Antígenos de Neoplasias/genética , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade
4.
Oncoimmunology ; 5(2): e1075692, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27057447

RESUMO

Microsatellite instability (MSI-H) is caused by DNA mismatch repair deficiency and occurs in 15% of colorectal cancers. MSI-H cancers generate highly immunogenic frameshift peptide (FSP) antigens, which elicit pronounced local immune responses. A subset of MSI-H colorectal cancers develops in frame of Lynch syndrome, which represents an ideal human model for studying the concept of immunoediting. Immunoediting describes how continuous anti-tumoral immune surveillance of the host eventually leads to the selection of tumor cells that escape immune cell recognition and destruction. Between 30 and 40% of Lynch syndrome-associated colorectal cancers display loss of HLA class I antigen expression as a result of Beta2-microglobulin (B2M) mutations. Whether B2M mutations result from immunoediting has been unknown. To address this question, we related B2M mutation status of Lynch syndrome-associated colorectal cancer specimens (n = 30) to CD3-positive, CD8-positive and FOXP3-positive T cell infiltration in both tumor and normal mucosa. No significant correlation between B2M mutations and immune cell infiltration was observed in tumor tissue. However, FOXP3-positive T cell infiltration was significantly lower in normal mucosa adjacent to B2M-mutant (mt) compared to B2M-wild type (wt) tumors (mean: 0.98% FOXP3-positive area/region of interest (ROI) in B2M-wt vs. 0.52% FOXP3-positive area/ROI in B2M-mt, p = 0.023). Our results suggest that in the absence of immune-suppressive regulatory T cells (Treg), the outgrowth of less immunogenic B2M-mt tumor cells is favored. This finding supports the immunoediting concept in human solid cancer development and indicates a critical role of the immune milieu in normal colonic mucosa for the course of disease.

5.
PLoS One ; 10(3): e0121980, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25816162

RESUMO

Lynch syndrome is caused by germline mutations of DNA mismatch repair (MMR) genes, most frequently MLH1 and MSH2. Recently, MMR-deficient crypt foci (MMR-DCF) have been identified as a novel lesion which occurs at high frequency in the intestinal mucosa from Lynch syndrome mutation carriers, but very rarely progress to cancer. To shed light on molecular alterations and clinical associations of MMR-DCF, we systematically searched the intestinal mucosa from Lynch syndrome patients for MMR-DCF by immunohistochemistry. The identified lesions were characterised for alterations in microsatellite-bearing genes with proven or suspected role in malignant transformation. We demonstrate that the prevalence of MMR-DCF (mean 0.84 MMR-DCF per 1 cm2 mucosa in the colorectum of Lynch syndrome patients) was significantly associated with patients' age, but not with patients' gender. No MMR-DCF were detectable in the mucosa of patients with sporadic MSI-H colorectal cancer (n = 12). Microsatellite instability of at least one tested marker was detected in 89% of the MMR-DCF examined, indicating an immediate onset of microsatellite instability after MMR gene inactivation. Coding microsatellite mutations were most frequent in the genes HT001 (ASTE1) with 33%, followed by AIM2 (17%) and BAX (10%). Though MMR deficiency alone appears to be insufficient for malignant transformation, it leads to measurable microsatellite instability even in single MMR-deficient crypts. Our data indicate for the first time that the frequency of MMR-DCF increases with patients' age. Similar patterns of coding microsatellite instability in MMR-DCF and MMR-deficient cancers suggest that certain combinations of coding microsatellite mutations, including mutations of the HT001, AIM2 and BAX gene, may contribute to the progression of MMR-deficient lesions into MMR-deficient cancers.


Assuntos
Focos de Criptas Aberrantes/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Mucosa Intestinal/patologia , Instabilidade de Microssatélites , Focos de Criptas Aberrantes/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Fatores Etários , Idoso , Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteínas de Ligação a DNA/genética , Humanos , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética , Proteínas/genética , Adulto Jovem , Proteína X Associada a bcl-2/genética
6.
Fam Cancer ; 10(3): 557-65, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21598004

RESUMO

High level microsatellite instability (MSI-H) is a hallmark of Lynch syndrome-associated colorectal cancer (CRC). MSI-H CRC express immunogenic tumour antigens as a consequence of DNA mismatch repair deficiency-induced frameshift mutations. Consequently, frameshift antigen-specific immune responses are commonly observed in patients with Lynch syndrome-associated MSI-H CRC. Dendritic cells (DC) and macrophages play a crucial role in the induction and modulation of immune responses. We here analysed DC and macrophage infiltration in MSI-H and microsatellite-stable CRC. Sixty-nine CRC (MSI-H, n = 33; microsatellite-stable, n = 36) were examined for the density of tumour-infiltrating DC, Foxp3-positive regulatory T cells, and CD163-positive macrophages. In MSI-H lesions, S100-positive and CD163-positive cell counts were significantly higher compared to microsatellite-stable lesions (S100: epithelium P = 0.018, stroma P = 0.042; CD163: epithelium P < 0.001, stroma P = 0.046). Additionally, numbers of CD208-positive mature DC were significantly elevated in the epithelial compartment of MSI-H CRC (P = 0.027). High numbers of tumour-infiltrating Foxp3-positive T cells were detected in tumours showing a low proportion of CD208-positive, mature DC among the total number of S100-positive cells. Our study demonstrates that infiltration with DC, mature DC, and macrophages is elevated in MSI-H compared to microsatellite-stable CRC. The positive correlation of Foxp3-positive Treg cell density with a low proportion of mature DC suggests that impaired DC maturation may contribute to local immune evasion in CRC. Our results demonstrate that DC and macrophages in the tumour environment likely play an important role in the induction of antigen-specific immune responses in Lynch syndrome. Moreover, impaired DC maturation might contribute to local immune evasion in CRC.


Assuntos
Neoplasias Colorretais/imunologia , Células Dendríticas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Instabilidade de Microssatélites , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/imunologia , Neoplasias Colorretais/patologia , Células Dendríticas/patologia , Feminino , Humanos , Linfócitos do Interstício Tumoral/patologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Linfócitos T Reguladores/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa