Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Funct Mater ; 34(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38966003

RESUMO

4D printing is the 3D printing of objects that change chemically or physically in response to an external stimulus over time. Photothermally responsive shape memory materials are attractive for their ability to undergo remote activation. While photothermal methods using gold nanorods (AuNRs) have been used for shape recovery, 3D patterning of these materials into objects with complex geometries using degradable materials has not been addressed. Here, we report on the fabrication of 3D printed shape memory bioplastics with photo-activated shape recovery. Protein-based nanocomposites based on bovine serum albumin (BSA), poly (ethylene glycol) diacrylate and gold nanorods were developed for vat photopolymerization. These 3D printed bioplastics were mechanically deformed under high loads, and the proteins served as mechanoactive elements that unfolded in an energy-dissipating mechanism that prevented fracture of the thermoset. The bioplastic object maintained its metastable shape-programmed state under ambient conditions. Subsequently, up to 99% shape recovery was achieved within 1 min of irradiation with near-infrared light. Mechanical characterization and small angle X-ray scattering (SAXS) analysis suggest that the proteins mechanically unfold during the shape programming step and may refold during shape recovery. These composites are promising materials for the fabrication of biodegradable shape-morphing devices for robotics and medicine.

2.
Small ; 20(22): e2306564, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105580

RESUMO

3D-printed engineered living materials (ELM) are promising bioproduction platforms for agriculture, biotechnology, sustainable energy, and green technology applications. However, the design of these platforms faces several challenges, such as the processability of these materials into complex form factors and control over their mechanical properties. Herein, ELM are presented as 3D-printed bioreactors with arbitrary shape geometries and tunable mechanical properties (moduli and toughness). Poly(ethylene glycol) diacrylate (PEGDA) is used as the precursor to create polymer networks that encapsulate the microorganisms during the vat photopolymerization process. A major limitation of PEGDA networks is their propensity to swell and fracture when submerged in water. The authors overcame this issue by adding glycerol to the resin formulation to 3D print mechanically tough ELM hydrogels. While polymer concentration affects the modulus and reduces bioproduction, ELM bioreactors still maintain their metabolic activity regardless of polymer concentration. These ELM bioreactors have the potential to be used in different applications for sustainable architecture, food production, and biomedical devices that require different mechanical properties from soft to stiff.


Assuntos
Reatores Biológicos , Polietilenoglicóis , Polimerização , Impressão Tridimensional , Polietilenoglicóis/química , Hidrogéis/química , Polímeros/química
3.
Adv Funct Mater ; 33(24)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37810281

RESUMO

Engineered living materials (ELMs) combine living cells with polymeric matrices to yield unique materials with programmable functions. While the cellular platform and the polymer network determine the material properties and applications, there are still gaps in our ability to seamlessly integrate the biotic (cellular) and abiotic (polymer) components into singular material, then assemble them into devices and machines. Herein, we demonstrated the additive-manufacturing of ELMs wherein bioproduction of metabolites from the encapsulated cells enhanced the properties of the surrounding matrix. First, we developed aqueous resins comprising bovine serum albumin (BSA) and poly(ethylene glycol diacrylate) (PEGDA) with engineered microbes for vat photopolymerization to create objects with a wide array of 3D form factors. The BSA-PEGDA matrix afforded hydrogels that were mechanically stiff and tough for use in load-bearing applications. Second, we demonstrated the continuous in situ production of L-DOPA, naringenin, and betaxanthins from the engineered cells encapsulated within the BSA-PEGDA matrix. These microbial metabolites bioaugmented the properties of the BSA-PEGDA matrix by enhancing the stiffness (L-DOPA) or resistance to enzymatic degradation (betaxanthin). Finally, we demonstrated the assembly of the 3D printed ELM components into mechanically functional bolts and gears to showcase the potential to create functional ELMs for synthetic living machines.

4.
Biotechnol Bioeng ; 120(2): 572-582, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36281490

RESUMO

Engineered living materials (ELMs) have broad applications for enabling on-demand bioproduction of compounds ranging from small molecules to large proteins. However, most formulations and reports lack the capacity for storage beyond a few months. In this study, we develop an optimized procedure to maximize stress resilience of yeast-laden ELMs through the use of desiccant storage and 10% trehalose incubation before lyophilization. This approach led to over 1-year room temperature storage stability across a range of strain genotypes. In particular, we highlight the superiority of exogenously added trehalose over endogenous, engineered production in yielding robust preservation resilience that is independent of cell state. This simple, effective protocol enables sufficient accumulation of intracellular trehalose over a short period of contact time across a range of strain backgrounds without requiring the overexpression of a trehalose importer. A variety of microscopic analysis including µ-CT and confocal microscopy indicate that cells form spherical colonies within F127-BUM ELMs that have variable viability upon storage. The robustness of the overall procedure developed here highlights the potential for widespread deployment to enable on-demand, cold-chain independent bioproduction.


Assuntos
Higroscópicos , Trealose , Liofilização/métodos
5.
Int J Mol Sci ; 23(13)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806167

RESUMO

Medical adhesives are used to secure wound care dressings and other critical devices to the skin. Without means of safe removal, these stronger adhesives are difficult to painlessly remove from the skin and may cause medical-adhesive-related skin injuries (MARSI), including skin tears and an increased risk of infection. Lower-adhesion medical tapes may be applied to avoid MARSI, leading to device dislodgement and further medical complications. This paper outlines the development of a high-adhesion medical tape designed for low skin trauma upon release. By warming the skin-attached tape for 10-30 s, a significant loss in adhesion was achieved. A C14/C18 copolymer was developed and combined with a selected pressure-sensitive adhesive (PSA) material. The addition of 1% C14/C18 copolymer yielded the largest temperature-responsive drop in surface adhesion. The adhesive film was characterized using AFM, and distinct nanodomains were identified on the exterior surface of the PSA. Our optimized formulation yielded 67% drop in adhesion when warmed to 45 °C, perhaps due to melting nanodomains weakening the adhesive-substrate boundary layer. Pilot clinical testing resulted in a significant decrease in pain when a heat pack was used for removal, giving an average pain reduction of 66%.


Assuntos
Adesivos , Pele , Humanos , Dor/induzido quimicamente , Qualidade da Assistência à Saúde , Pele/lesões , Temperatura
6.
Biomacromolecules ; 21(2): 484-492, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31714754

RESUMO

Biosourced and biodegradable polymers for additive manufacturing could enable the rapid fabrication of parts for a broad spectrum of applications ranging from healthcare to aerospace. However, a limited number of these materials are suitable for vat photopolymerization processes. Herein, we report a two-step additive manufacturing process to fabricate robust protein-based constructs using a commercially available laser-based stereolithography printer. Methacrylated bovine serum albumin (MA-BSA) was synthesized and formulated into aqueous resins that were used to print complex three-dimensional (3D) objects with a resolution comparable to a commercially available resin. The MA-BSA resins were characterized by rheometry to determine the viscosity and the cure rate, as both parameters can ultimately be used to predict the printability of the resin. In the first step of patterning these materials, the MA-BSA resin was 3D printed, and in the second step, the printed construct was thermally cured to denature the globular protein and increase the intermolecular noncovalent interactions. Thus, the final 3D printed part was comprised of both chemical and physical cross-links. Compression studies of hydrated and dehydrated constructs demonstrated a broad range of compressive strengths and Young's moduli that could be further modulated by adjusting the type and amount of co-monomer. The printed hydrogel constructs demonstrated good cell viability (>95%) after a 21 day culture period. These MA-BSA resins are expected to be compatible with other vat photopolymerization techniques including digital light projection and continuous liquid interface production.


Assuntos
Hidrogéis/química , Plásticos/química , Impressão Tridimensional , Soroalbumina Bovina/química , Animais , Sobrevivência Celular , Dicroísmo Circular , Reagentes de Ligações Cruzadas/química , Teste de Materiais , Metacrilatos , Camundongos , Células NIH 3T3 , Compostos Organometálicos/química , Polietilenoglicóis/química , Polimerização , Resinas Sintéticas/química , Estereolitografia/instrumentação , Viscosidade
7.
Faraday Discuss ; 219(0): 58-72, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31424062

RESUMO

Herein, we describe a method to produce yeast-laden hydrogel inks for the direct-write 3D printing of cuboidal lattices for immobilized whole-cell catalysis. A poly(alkyl glycidyl ether)-based triblock copolymer was designed to have three important features for this application: (1) a temperature response, which allowed for facile processing of the material; (2) a shear response, which facilitated the extrusion of the material through a nozzle; and (3) UV light induced polymerization, which enabled the post-extrusion chemical crosslinking of network chains, and the fabrication of robust printed objects. These three key stimuli responses were confirmed via rheometrical characterization. A genetically-engineered yeast strain with an upregulated α-factor production pathway was incorporated into the hydrogel ink and 3D printed. The immobilized yeast cells exhibited adequate viability of 87.5% within the hydrogel. The production of the upregulated α-factor was detected using a detecting yeast strain and quantified at 268 nM (s = 34.6 nM) over 72 h. The reusability of these bioreactors was demonstrated via immersion of the yeast-laden hydrogel lattice in fresh SC media and confirmed by the detection of similar amounts of upregulated α-factor at 259 nM (s = 45.1 nM). These yeast-laden materials represent an attractive opportunity for whole-cell catalysis of other high-value products in a sustainable and continuous manner.


Assuntos
Bioimpressão/métodos , Compostos de Epóxi/química , Hidrogéis/química , Impressão Tridimensional , Saccharomyces cerevisiae/citologia , Alquilação , Reatores Biológicos/microbiologia , Células Imobilizadas/citologia , Microbiologia Industrial/métodos , Polimerização
8.
J Am Chem Soc ; 137(45): 14248-51, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26505551

RESUMO

Dynamic covalent chemistries have garnered significant attention for their potential to revolutionize technologies in the material fields (engineering, biomedical, and sensors) and synthetic design strategies as they provide access to stimuli responsiveness and adaptive behaviors. However, only a limited number of molecular motifs have been known to display this dynamic behavior under mild conditions. Here, we identified a dynamic covalent motif-thioaminals-that is produced from the reaction of hexahydrotriazines (HTs) with thiols. Furthermore, we report on the synthesis of a new family of step-growth polymers based on this motif. The condensation efficiently proceeds to quantitative yields within a short time frame and offers versatility in functional group tolerance; thus, it can be exploited to synthesize both small molecule thioaminals as well as high molecular weight polymers from the step-growth polymerization of HTs with dithiols. Careful evaluation of substituted HTs and organic thiols supported by DFT calculations led to a chemically diverse library of polymers based on this motif. Finally, dynamic substitution reactions were employed toward the facile preparation of functional oligomers and macromolecules. This dynamic covalent motif is particularly attractive for a range of applications that include material design and drug delivery due to the economic feasibility of synthesis.

9.
Nano Lett ; 14(6): 3395-9, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24802017

RESUMO

We report a facile synthesis of monodisperse ferrimagnetic Co(x)Fe(3-x)O4 nanocubes (NCs) through thermal decomposition of Fe(acac)3 and Co(acac)2 (acac = acetylacetonate) in the presence of oleic acid and sodium oleate. The sizes of the NCs are tuned from 10 to 60 nm, and their composition is optimized at x = 0.6 to show strong ferrimagnetism with the 20 nm Co0.6Fe2.4O4 NCs showing a room temperature Hc of 1930 Oe. The ferrimagnetic NCs are self-assembled at the water-air interface into a large-area (in square centimeter) monolayer array with a high packing density and (100) texture. The 20 nm NC array can be recorded at linear densities ranging from 254 to 31 kfci (thousand flux changes per inch). The work demonstrates the great potential of solution-phase synthesis and self-assembly of magnetic array for magnetic recording applications.

12.
Chem Commun (Camb) ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037748

RESUMO

In this work, we introduce a 3D-printable virus-like particle (VLP)-enhanced cross-linked biopolymer system. VLPs displaying surface-available acrylate groups were prepared through aza-Michael addition to serve as resins. The VLP resins were then photopolymerized into a poly(ethylene glycol) diacrylate (PEGDA) network following DLP 3D printing. This approach represents a convergence of disciplines, where the synergistic interaction between virology and additive manufacturing unlocks new frontiers in biotechnology.

13.
Adv Mater ; 36(26): e2313961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593210

RESUMO

The advent of covalent adaptable networks (CANs) through the incorporation of dynamic covalent bonds has led to unprecedented properties of macromolecular systems, which can be engineered at the molecular level. Among the various types of stimuli that can be used to trigger chemical changes within polymer networks, light stands out for its remote and spatiotemporal control under ambient conditions. However, most examples of photoactive CANs need to be transparent and they exhibit slow response, side reactions, and limited light penetration. In this vein, it is interesting to understand how molecular engineering of optically active dynamic linkages that offer fast response to visible light can impart "living" characteristics to CANs, especially in opaque systems. Here, the use of carbazole-based thiuram disulfides (CTDs) that offer dual reactivity as photoactivated reshuffling linkages and iniferters under visible light irradiation is reported. The fast response to visible light activation of the CTDs leads to temporal control of shape manipulation, healing, and chain extension in the polymer networks, despite the lack of optical transparency. This strategy charts a promising avenue for manipulating multifunctional photoactivated CANs in a controlled manner.

14.
Langmuir ; 29(24): 7472-7, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23368716

RESUMO

Magnetic nanoparticles (MNPs) provide a set of building blocks for constructing stimuli-responsive nanoscale materials with properties that are unique to this scale. The size and the composition of MNPs are tunable to meet the requirements for a range of applications including biosensors and data storage. Although many of these technologies would significantly benefit from the organization of nanoparticles into higher-order architectures, the precise placement and arrangement of nanoparticles over large areas of a surface remain a challenge. Herein, we demonstrate the viability of magnetic nanoparticles for patterned recording media utilizing a template-directed self-assembly process to afford well-defined nanostructures of magnetic nanoparticles and access these assemblies using magnetic force microscopy and a magnetic recording head. Photolithographically defined holes were utilized as templates to form assemblies of ferrimagnetic nanoparticle rings or pillars selectively over a large area (>1 cm(2)) in just 30 s. This approach is applicable to other nanoparticle systems as well and enables their high-throughput self-assembly for future advanced device fabrication.

15.
Langmuir ; 29(11): 3567-74, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23458256

RESUMO

We present a simple and facile strategy for the directed self-assembly of nanoparticles into complex geometries using a minimal set of post guiding features patterned on a substrate. This understanding is based on extensive studies of nanoparticle self-assembly into linear, dense-packed, circular, and star-shaped ensembles when coated onto patterned substrates of predefined post arrays. We determined the conditions under which nanoparticles assemble and "connect" two adjacent post features, thereby forming the desired shapes. We demonstrate that with rational design of the post patterns to enforce the required pairwise interactions with posts, we can create arbitrary arrangements of nanoparticles-for example, to write "IBM" in a deterministic manner. This demonstration of programmable, high-throughput directed self-assembly of nanoparticles shows an alternative route to generate functional nanoparticle assemblies.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Soluções
16.
Adv Mater ; 35(11): e2207673, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36594431

RESUMO

High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle-reinforced composite networks since deep light penetration of short-wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet-triplet annihilation upconversion (TTA-UC) is employed for curing opaque hydrogel composites created by direct-ink-write (DIW) 3D printing. TTA-UC converts low energy red light (λmax  = 660 nm) for deep penetration into higher-energy blue light to initiate free radical polymerizations within opaque objects. As proof-of-principle, hydrogels containing up to 15 wt.% TiO2 filler particles and doped with TTA-UC chromophores are readily cured with red light, while composites without the chromophores and TiO2 loadings as little as 1-2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D-printed composite polymer networks.

17.
Nat Commun ; 14(1): 4448, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488111

RESUMO

Plant-derived phenylpropanoids, in particular phenylpropenes, have diverse industrial applications ranging from flavors and fragrances to polymers and pharmaceuticals. Heterologous biosynthesis of these products has the potential to address low, seasonally dependent yields hindering ease of widespread manufacturing. However, previous efforts have been hindered by the inherent pathway promiscuity and the microbial toxicity of key pathway intermediates. Here, in this study, we establish the propensity of a tripartite microbial co-culture to overcome these limitations and demonstrate to our knowledge the first reported de novo phenylpropene production from simple sugar starting materials. After initially designing the system to accumulate eugenol, the platform modularity and downstream enzyme promiscuity was leveraged to quickly create avenues for hydroxychavicol and chavicol production. The consortia was found to be compatible with Engineered Living Material production platforms that allow for reusable, cold-chain-independent distributed manufacturing. This work lays the foundation for further deployment of modular microbial approaches to produce plant secondary metabolites.


Assuntos
Comércio , Perfumes , Técnicas de Cocultura , Conhecimento , Monossacarídeos
18.
Mater Today Bio ; 20: 100677, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37273790

RESUMO

Engineered living materials (ELMs) fabricated by encapsulating microbes in hydrogels have great potential as bioreactors for sustained bioproduction. While long-term metabolic activity has been demonstrated in these systems, the capacity and dynamics of gene expression over time is not well understood. Thus, we investigate the long-term gene expression dynamics in microbial ELMs constructed using different microbes and hydrogel matrices. Through direct gene expression measurements of engineered E. coli in F127-bisurethane methacrylate (F127-BUM) hydrogels, we show that inducible, input-responsive genetic programs in ELMs can be activated multiple times and maintained for multiple weeks. Interestingly, the encapsulated bacteria sustain inducible gene expression almost 10 times longer than free-floating, planktonic cells. These ELMs exhibit dynamic responsiveness to repeated induction cycles, with up to 97% of the initial gene expression capacity retained following a subsequent induction event. We demonstrate multi-week bioproduction cycling by implementing inducible CRISPR transcriptional activation (CRISPRa) programs that regulate the expression of enzymes in a pteridine biosynthesis pathway. ELMs fabricated from engineered S. cerevisiae in bovine serum albumin (BSA) - polyethylene glycol diacrylate (PEGDA) hydrogels were programmed to express two different proteins, each under the control of a different chemical inducer. We observed scheduled bioproduction switching between betaxanthin pigment molecules and proteinase A in S. cerevisiae ELMs over the course of 27 days under continuous cultivation. Overall, these results suggest that the capacity for long-term genetic expression may be a general property of microbial ELMs. This work establishes approaches for implementing dynamic, input-responsive genetic programs to tailor ELM functions for a wide range of advanced applications.

19.
ACS Appl Polym Mater ; 4(5): 3054-3061, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38239328

RESUMO

Herein, we describe a multi-stimuli-responsive hydrogel that can be 3D printed via a direct-ink write process to afford cross-linked hydrogel networks that can be post-functionalized with thiol-bearing molecules. Poly(alkyl glycidyl ether)s with methacrylate groups at their termini were synthesized and self-assembled into hydrogels with three key stimuli-responsive behaviors necessary for extrusion based 3D printing: a sol-gel temperature response, shear-thinning behavior, and the ability to be photochemically crosslinked. In addition, the chemically crosslinked hydrogels demonstrated a temperature dependent swelling consistent with an LCST behavior. Pyridyl disulfide urethane methacrylate (PDS-UM) monomers were introduced into the network as a thiol-reactive handle for post-functionalization of the hydrogel. The reactivities of these hydrogels were investigated at different temperatures (5, 25, 37 °C) and swelling statuses (as-cured versus preswollen) using glutathione as a reactive probe. To illustrate the versatility of the platform, a number of additional thiol-containing probes such as proteins, polymers, and small molecules were conjugated to the hydrogel network at different temperatures, pH's, and concentrations. In a final demonstration of the multi-stimuli-responsive hydrogel platform, a customized DIW 3D printer was used to fabricate a printed object that was subsequently conjugated with a fluorescent tag and displayed the ability to change in size with environmental temperature.

20.
ACS Appl Mater Interfaces ; 14(18): 21418-21425, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471016

RESUMO

Nature uses proteins as building blocks to create three-dimensional (3D) structural components (like spiderwebs and tissue) that are recycled within a closed loop. Furthermore, it is difficult to replicate the mechanical properties of these 3D architectures within synthetic systems. In the absence of biological machinery, protein-based materials can be difficult to process and can have a limited range of mechanical properties. Herein, we present an additive manufacturing workflow to fabricate tough, protein-based composite hydrogels and bioplastics with a range of mechanical properties. Briefly, methacrylated bovine-serum-albumin-based aqueous resins were 3D-printed using a commercial vat photopolymerization system. The printed structures were then treated with tannic acid to introduce additional non-covalent interactions and form tough hydrogels. The hydrogel material could be sutured and withstand mechanical load, even after immersion in water for 24 h. Additionally, a denaturing thermal cure could be used to virtually eliminate rehydration of the material and form a bioplastic. To highlight the functionality of this material, a bioplastic screw was 3D-printed and driven into wood without damage to the screw. Moreover, the 3D-printed constructs enzymatically degraded up to 85% after 30 days in pepsin solution. Thus, these protein-based 3D-printed constructs show great potential for biomedical devices that degrade in situ.


Assuntos
Soroalbumina Bovina , Taninos , Hidrogéis/química , Impressão Tridimensional , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa