RESUMO
BACKGROUND: Activation and regulation of androgen receptor (AR) signaling and the DNA damage response impact the prostate cancer (PCa) treatment modalities of androgen deprivation therapy (ADT) and radiotherapy. Here, we have evaluated a role for human single-strand binding protein 1 (hSSB1/NABP2) in modulation of the cellular response to androgens and ionizing radiation (IR). hSSB1 has defined roles in transcription and maintenance of genome stability, yet little is known about this protein in PCa. METHODS: We correlated hSSB1 with measures of genomic instability across available PCa cases from The Cancer Genome Atlas (TCGA). Microarray and subsequent pathway and transcription factor enrichment analysis were performed on LNCaP and DU145 prostate cancer cells. RESULTS: Our data demonstrate that hSSB1 expression in PCa correlates with measures of genomic instability including multigene signatures and genomic scars that are reflective of defects in the repair of DNA double-strand breaks via homologous recombination. In response to IR-induced DNA damage, we demonstrate that hSSB1 regulates cellular pathways that control cell cycle progression and the associated checkpoints. In keeping with a role for hSSB1 in transcription, our analysis revealed that hSSB1 negatively modulates p53 and RNA polymerase II transcription in PCa. Of relevance to PCa pathology, our findings highlight a transcriptional role for hSSB1 in regulating the androgen response. We identified that AR function is predicted to be impacted by hSSB1 depletion, whereby this protein is required to modulate AR gene activity in PCa. CONCLUSIONS: Our findings point to a key role for hSSB1 in mediating the cellular response to androgen and DNA damage via modulation of transcription. Exploiting hSSB1 in PCa might yield benefits as a strategy to ensure a durable response to ADT and/or radiotherapy and improved patient outcomes.
Assuntos
Proteínas de Ligação a DNA , Proteínas Mitocondriais , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios/farmacologia , Androgênios/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Proteínas Mitocondriais/metabolismoRESUMO
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.
Assuntos
Ácidos Graxos , Neoplasias , Ácidos Graxos/metabolismo , Glicerofosfolipídeos/química , Metabolismo dos Lipídeos , Transdução de SinaisRESUMO
BACKGROUND: Triple-negative breast cancers (TNBC) have a relatively poor prognosis and responses to targeted therapies. Between 25 and 39% of TNBCs are claudin-low, a poorly differentiated subtype enriched for mesenchymal, stem cell and mitogen-activated signaling pathways. We investigated the role of the cell-surface co-receptor NRP1 in the biology of claudin-low TNBC. METHODS: The clinical prognostic value of NRP1 was determined by Kaplan-Meier analysis. GSVA analysis of METABRIC and Oslo2 transcriptomics datasets was used to correlate NRP1 expression with claudin-low gene signature scores. NRP1 siRNA knockdown was performed in MDA-MB-231, BT-549, SUM159 and Hs578T claudin-low cells and proliferation and viability measured by live cell imaging and DNA quantification. In SUM159 orthotopic xenograft models using NSG mice, NRP1 was suppressed by shRNA knockdown or systemic treatment with the NRP1-targeted monoclonal antibody Vesencumab. NRP1-mediated signaling pathways were interrogated by protein array and Western blotting. RESULTS: High NRP1 expression was associated with shorter relapse- and metastasis-free survival specifically in ER-negative BrCa cohorts. NRP1 was over-expressed specifically in claudin-low clinical samples and cell lines, and NRP1 knockdown reduced proliferation of claudin-low cells and prolonged survival in a claudin-low orthotopic xenograft model. NRP1 inhibition suppressed expression of the mesenchymal and stem cell markers ZEB1 and ITGA6, respectively, compromised spheroid-initiating capacity and exerted potent anti-tumor effects on claudin-low orthotopic xenografts (12.8-fold reduction in endpoint tumor volume). NRP1 was required to maintain maximal RAS/MAPK signaling via EGFR and PDGFR, a hallmark of claudin-low tumors. CONCLUSIONS: These data implicate NRP1 in the aggressive phenotype of claudin-low breast cancer and offer a novel targeted therapeutic approach to this poor prognosis subtype.
Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Claudinas/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Recidiva Local de Neoplasia , Neuropilina-1/genética , Neuropilina-1/uso terapêutico , Células-Tronco/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteínas rasRESUMO
The spirooxepinisoxazoline alkaloid psammaplysin F (1) was selected as a scaffold for the generation of a unique screening library for both drug discovery and chemical biology research. Large-scale extraction and isolation chemistry was performed on a marine sponge (Hyattella sp.) collected from the Great Barrier Reef in order to acquire >200 mg of the desired bromotyrosine-derived alkaloidal scaffold. Parallel solution-phase semisynthesis was employed to generate a series of psammaplysin-based urea (2-9) and amide analogues (10-11) in low to moderate yields. The chemical structures of all analogues were characterized using NMR and MS data. The absolute configuration of psammaplysin F and all semisynthetic analogues was determined as 6R, 7R by comparison of ECD data with literature values. All compounds (1-11) were evaluated for their effect on cell cycle distribution and changes to cancer metabolism in LNCaP prostate cancer cells using a multiparametric quantitative single-cell imaging approach. These investigations identified that in LNCaP cells psammaplysin F and some urea analogues caused loss of mitochondrial membrane potential, fragmentation of the mitochondrial tubular network, chromosome misalignment, and cell cycle arrest in mitosis.
Assuntos
Neoplasias da Próstata/patologia , Análise de Célula Única/métodos , Compostos de Espiro/síntese química , Tirosina/análogos & derivados , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Poríferos/química , Análise Espectral/métodos , Compostos de Espiro/isolamento & purificação , Tirosina/síntese química , Tirosina/isolamento & purificaçãoRESUMO
The dysregulation of the serine-protease family kallikreins (KLKs), comprising 15 genes, has been reportedly associated with cancer. Their expression in several tissues and physiological fluids makes them potential candidates as biomarkers and therapeutic targets. There are several databases available to mine gene expression in cancer, which often include clinical and pathological data. However, these platforms present some limitations when comparing a specific set of genes and can generate considerable unwanted data. Here, several datasets that showed significant differential expression (p<0.01) in cancer vs. normal (n=118), metastasis vs. primary (n=15) and association with cancer survival (n=21) have been compiled in a user-friendly format from two open and/or publicly available databases Oncomine and OncoLnc for the 15 KLKs. The data have been included in a free web application tool: the KLK-CANMAP https://cancerbioinformatics.shinyapps.io/klk-canmap/. This tool integrates, analyses and visualises data and it was developed with the R Shiny framework. Using KLK-CANMAP box-plots, heatmaps and Kaplan-Meier graphs can be generated for the KLKs of interest. We believe this new cancer KLK focused web tool will benefit the KLK community by narrowing the data visualisation to only the genes of interest.
Assuntos
Mineração de Dados , Conjuntos de Dados como Assunto , Internet , Calicreínas/genética , Neoplasias/genética , Software , Bases de Dados Genéticas , Humanos , Calicreínas/metabolismoRESUMO
The naturally occurring pentacyclic diterpenoid gibberellic acid (1) was used in the generation of a drug-like amide library using parallel-solution-phase synthesis. Prior to the synthesis, a virtual library was generated and prioritized based on drug-like physicochemical parameters such as log P, hydrogen bond donor/acceptor counts, and molecular weight. The structures of the synthesized analogues (2-13) were elucidated following analysis of the NMR, MS, UV, and IR data. Compound 12 afforded crystalline material, and its structure was confirmed by X-ray crystallographic analysis. All compounds were evaluated in vitro for cytotoxicity and deregulation of lipid metabolism in LNCaP prostate cancer cells. While no cytotoxic activity was identified at the concentrations tested, synthesized analogues 3, 5, 7, 10, and 11 substantially reduced cellular uptake of free cholesterol in prostate cancer cells, suggesting a novel role of gibberellic acid derivatives in deregulating cholesterol metabolism.
Assuntos
Colesterol/metabolismo , Giberelinas/farmacologia , Neoplasias da Próstata/metabolismo , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Citotoxinas/farmacologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , MasculinoRESUMO
Current treatments for advanced prostate cancer focus on inhibition of the androgen receptor (AR) by androgen deprivation therapy (ADT). However, complex interactions mediated by tumor suppressors, oncogenes, aberrations of AR expression, or de novo androgen production have been shown to induce the adaptive response of prostate cancer, leading to the development of castration resistant prostate cancer. In this study, we report the effects of AR antagonist, enzalutamide on the protein contents of extracellular vesicles (EVs). EVs mediate cell-to-cell communication and increasing evidence shows the role of EVs in promoting cancer survival and metastasis. We found that treatment with enzalutamide alters the secretion of EVs, one of which is a plasma membrane calcium pump, ATP2B1/PMCA ATPase, as an AR-regulated EV protein. We highlight the networks of interactions between AR, Ca2+ , and ATP2B1, where the extracellular proteins thrombospondin-1, gelsolin, and integrinß1 were previously reported as regulators for cancer progression and metastasis, indicating the potential role of EV-derived proteins in mediating calcium homoeostasis under AR inhibition by enzalutamide. Our data further highlight the cross-talk between AR signaling and EV pathways in mediating resistance toward ADT.
Assuntos
Adenocarcinoma/metabolismo , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/química , Transdução de Sinais/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Benzamidas , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Gelsolina/metabolismo , Humanos , Integrina beta1/metabolismo , Masculino , Nitrilas , Feniltioidantoína/farmacologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Trombospondina 1/metabolismo , Células Tumorais CultivadasRESUMO
The use of circulating tumor cells (CTCs) and circulating extracellular vesicles (EVs), such as exosomes, as liquid biopsy-derived biomarkers for cancers have been investigated. CTC enumeration using the CellSearch based platform provides an accurate insight on overall survival where higher CTC counts indicate poor prognosis for patients with advanced metastatic cancer. EVs provide information based on their lipid, protein, and nucleic acid content and can be isolated from biofluids and analyzed from a relatively small volume, providing a routine and non-invasive modality to monitor disease progression. Our pilot experiment by assessing the level of two subpopulations of small EVs, the CD9 positive and CD63 positive EVs, showed that the CD9 positive EV level is higher in plasma from patients with advanced metastatic prostate cancer with detectable CTCs. These data show the potential utility of a particular EV subpopulation to serve as biomarkers for advanced metastatic prostate cancer. EVs can potentially be utilized as biomarkers to provide accurate genotypic and phenotypic information for advanced prostate cancer, where new strategies to design a more personalized therapy is currently the focus of considerable investigation.
Assuntos
Vesículas Extracelulares , Células Neoplásicas Circulantes , Medicina de Precisão/métodos , Neoplasias da Próstata , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Técnicas de Apoio para a Decisão , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Masculino , Estadiamento de Neoplasias , Células Neoplásicas Circulantes/patologia , Seleção de Pacientes , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapiaRESUMO
BACKGROUND: Blockade of the PD-1/PD-L1 immune checkpoint pathway is emerging as a promising immunotherapeutic approach for the management and treatment of head and neck cancer patients who do not respond to 1st/2nd line therapy. However, as checkpoint inhibitors are cost intensive, identifying patients who would most likely benefit from anti PD-L1 therapy is required. Developing a non-invasive technique would be of major benefit to the patient and to the health care system. CASE PRESENTATION: We report the case of a 56 year old man affected by a supraglottic squamous cell carcinoma (SCC). A CT scan showed a 20 mm right jugulodigastric node and suspicious lung lesions. The lung lesion was biopsied and confirmed to be consistent with SCC. The patient was offered palliative chemotherapy. At the time of presentation, a blood sample was taken for circulating tumour cell (CTC) analysis. The dissemination of cancer was confirmed by the detection of CTCs in the peripheral blood of the patient, measured by the CellSearch System (Janssen Diagnostics). Using marker-independent, low-shear spiral microfluidic technology combined with immunocytochemistry, CTC clusters were found in this patient at the same time point, expressing PD-L1. CONCLUSION: This report highlights the potential use of CTCs to identify patients which might respond to anti PD-L1 therapy.
Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Ósseas/secundário , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias Pulmonares/secundário , Células Neoplásicas Circulantes/patologia , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/tratamento farmacológico , Cisplatino/uso terapêutico , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Cuidados Paliativos/métodos , Carcinoma de Células Escamosas de Cabeça e PescoçoRESUMO
SUMMARY: Circos plots are graphical outputs that display three dimensional chromosomal interactions and fusion transcripts. However, the Circos plot tool is not an interactive visualization tool, but rather a figure generator. For example, it does not enable data to be added dynamically nor does it provide information for specific data points interactively. Recently, an R-based Circos tool (RCircos) has been developed to integrate Circos to R, but similarly, Rcircos can only be used to generate plots. Thus, we have developed a Circos plot tool (J-Circos) that is an interactive visualization tool that can plot Circos figures, as well as being able to dynamically add data to the figure, and providing information for specific data points using mouse hover display and zoom in/out functions. J-Circos uses the Java computer language to enable, it to be used on most operating systems (Windows, MacOS, Linux). Users can input data into J-Circos using flat data formats, as well as from the Graphical user interface (GUI). J-Circos will enable biologists to better study more complex chromosomal interactions and fusion transcripts that are otherwise difficult to visualize from next-generation sequencing data. AVAILABILITY AND IMPLEMENTATION: J-circos and its manual are freely available at http://www.australianprostatecentre.org/research/software/jcircos CONTACT: j.an@qut.edu.au SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Cromossomos , Gráficos por Computador , Fusão Gênica , SoftwareRESUMO
Glutamine is conditionally essential in cancer cells, being utilized as a carbon and nitrogen source for macromolecule production, as well as for anaplerotic reactions fuelling the tricarboxylic acid (TCA) cycle. In this study, we demonstrated that the glutamine transporter ASCT2 (SLC1A5) is highly expressed in prostate cancer patient samples. Using LNCaP and PC-3 prostate cancer cell lines, we showed that chemical or shRNA-mediated inhibition of ASCT2 function in vitro decreases glutamine uptake, cell cycle progression through E2F transcription factors, mTORC1 pathway activation and cell growth. Chemical inhibition also reduces basal oxygen consumption and fatty acid synthesis, showing that downstream metabolic function is reliant on ASCT2-mediated glutamine uptake. Furthermore, shRNA knockdown of ASCT2 in PC-3 cell xenografts significantly inhibits tumour growth and metastasis in vivo, associated with the down-regulation of E2F cell cycle pathway proteins. In conclusion, ASCT2-mediated glutamine uptake is essential for multiple pathways regulating the cell cycle and cell growth, and is therefore a putative therapeutic target in prostate cancer.
Assuntos
Sistema ASC de Transporte de Aminoácidos/genética , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Neoplasias da Próstata/genética , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Ácidos Graxos/metabolismo , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Nus , Antígenos de Histocompatibilidade Menor , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Metástase Neoplásica , Oxigênio/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/prevenção & controle , RNA Interferente Pequeno , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Chemical investigations of the CH2Cl2 extract obtained from the leaves of the Australian rainforest tree Maytenus bilocularis afforded three new dihydro-ß-agarofurans, bilocularins A-C (1-3), and six known congeners, namely, celastrine A (4), 1α,6ß,8α-triacetoxy-9α-benzoyloxydihydro-ß-agarofuran (5), 1α,6ß-diacetoxy-9α-benzoyloxy-8α-hydroxydihydro-ß-agarofuran (6), Ejap-10 (11), 1α,6ß-diacetoxy-9ß-benzoyloxydihydro-ß-agarofuran (12), and Ejap-2 (13). The major compound 1 was used in semisynthetic studies to afford four ester derivatives (7-10). The chemical structures of 1-3 were elucidated following analysis of 1D/2D NMR and MS data. The absolute configurations of bilocularins A (1) and B (2) were determined by single-crystal X-ray diffraction analysis. All compounds were evaluated for cytotoxic activity against the human prostate cancer cell line LNCaP; none of the compounds were active. However, several compounds showed similar potency to the drug efflux pump inhibitor verapamil in reversing the drug resistance of the human leukemia CEM/VCR R cell line. In addition, similar to verapamil, compound 5 was found to inhibit leucine uptake in LNCaP cells (IC50 = 15.5 µM), which was more potent than the leucine analogue 2-aminobicyclo[2.2.1]heptane-2-carbocyclic acid. This is the first report of secondary metabolites from Maytenus bilocularis.
Assuntos
Maytenus/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Austrália , Cristalografia por Raios X , Humanos , Conformação Molecular , Estrutura Molecular , Floresta Úmida , Sesquiterpenos/químicaRESUMO
BACKGROUND: Strand specific RNAseq data is now more common in RNAseq projects. Visualizing RNAseq data has become an important matter in Analysis of sequencing data. The most widely used visualization tool is the UCSC genome browser that introduced the custom track concept that enabled researchers to simultaneously visualize gene expression at a particular locus from multiple experiments. Our objective of the software tool is to provide friendly interface for visualization of RNAseq datasets. RESULTS: This paper introduces a visualization tool (RNASeqBrowser) that incorporates and extends the functionality of the UCSC genome browser. For example, RNASeqBrowser simultaneously displays read coverage, SNPs, InDels and raw read tracks with other BED and wiggle tracks -- all being dynamically built from the BAM file. Paired reads are also connected in the browser to enable easier identification of novel exon/intron borders and chimaeric transcripts. Strand specific RNAseq data is also supported by RNASeqBrowser that displays reads above (positive strand transcript) or below (negative strand transcripts) a central line. Finally, RNASeqBrowser was designed for ease of use for users with few bioinformatic skills, and incorporates the features of many genome browsers into one platform. CONCLUSIONS: The features of RNASeqBrowser: (1) RNASeqBrowser integrates UCSC genome browser and NGS visualization tools such as IGV. It extends the functionality of the UCSC genome browser by adding several new types of tracks to show NGS data such as individual raw reads, SNPs and InDels. (2) RNASeqBrowser can dynamically generate RNA secondary structure. It is useful for identifying non-coding RNA such as miRNA. (3) Overlaying NGS wiggle data is helpful in displaying differential expression and is simple to implement in RNASeqBrowser. (4) NGS data accumulates a lot of raw reads. Thus, RNASeqBrowser collapses exact duplicate reads to reduce visualization space. Normal PC's can show many windows of NGS individual raw reads without much delay. (5) Multiple popup windows of individual raw reads provide users with more viewing space. This avoids existing approaches (such as IGV) which squeeze all raw reads into one window. This will be helpful for visualizing multiple datasets simultaneously. RNASeqBrowser and its manual are freely available at http://www.australianprostatecentre.org/research/software/rnaseqbrowser or http://sourceforge.net/projects/rnaseqbrowser/.
Assuntos
Bases de Dados Genéticas , Genoma , Análise de Sequência de RNA/métodos , Software , Biologia Computacional/métodos , Mutação INDEL/genética , InternetRESUMO
BACKGROUND: Fusion transcripts are found in many tissues and have the potential to create novel functional products. Here, we investigate the genomic sequences around fusion junctions to better understand the transcriptional mechanisms mediating fusion transcription/splicing. We analyzed data from prostate (cancer) cells as previous studies have shown extensively that these cells readily undergo fusion transcription. RESULTS: We used the FusionMap program to identify high-confidence fusion transcripts from RNAseq data. The RNAseq datasets were from our (N = 8) and other (N = 14) clinical prostate tumors with adjacent non-cancer cells, and from the LNCaP prostate cancer cell line that were mock-, androgen- (DHT), and anti-androgen- (bicalutamide, enzalutamide) treated. In total, 185 fusion transcripts were identified from all RNAseq datasets. The majority (76%) of these fusion transcripts were 'read-through chimeras' derived from adjacent genes in the genome. Characterization of sequences at fusion loci were carried out using a combination of the FusionMap program, custom Perl scripts, and the RNAfold program. Our computational analysis indicated that most fusion junctions (76%) use the consensus GT-AG intron donor-acceptor splice site, and most fusion transcripts (85%) maintained the open reading frame. We assessed whether parental genes of fusion transcripts have the potential to form complementary base pairing between parental genes which might bring them into physical proximity. Our computational analysis of sequences flanking fusion junctions at parental loci indicate that these loci have a similar propensity as non-fusion loci to hybridize. The abundance of repetitive sequences at fusion and non-fusion loci was also investigated given that SINE repeats are involved in aberrant gene transcription. We found few instances of repetitive sequences at both fusion and non-fusion junctions. Finally, RT-qPCR was performed on RNA from both clinical prostate tumors and adjacent non-cancer cells (N = 7), and LNCaP cells treated as above to validate the expression of seven fusion transcripts and their respective parental genes. We reveal that fusion transcript expression is similar to the expression of parental genes. CONCLUSIONS: Fusion transcripts maintain the open reading frame, and likely use the same transcriptional machinery as non-fusion transcripts as they share many genomic features at splice/fusion junctions.
Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Locos de Características Quantitativas , Splicing de RNA , Transcrição Gênica , Androgênios/farmacologia , Antineoplásicos Hormonais/farmacologia , Biologia Computacional/métodos , Sequência Conservada , Conjuntos de Dados como Assunto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Motivos de Nucleotídeos , Sítios de Splice de RNA , Sequências Repetitivas de Ácido NucleicoRESUMO
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer with 650,000 new cases p/a worldwide. HNSCC causes high morbidity with a 5-year survival rate of less than 60%, which has not improved due to the lack of early detection (Bozec et al. Eur Arch Otorhinolaryngol. 2013;270: 2745-9). Metastatic disease remains one of the leading causes of death in HNSCC patients. This review article provides a comprehensive overview of literature over the past 5 years on the detection of circulating tumour cells (CTCs) in HNSCC; CTC biology and future perspectives. CTCs are a hallmark of invasive cancer cells and key to metastasis. CTCs can be used as surrogate markers of overall survival and progression-free survival. CTCs are currently used as prognostic factors for breast, prostate and colorectal cancers using the CellSearch® system. CTCs have been detected in HNSCC, however, these numbers depend on the technique applied, time of blood collection and the clinical stage of the patient. The impact of CTCs in HNSCC is not well understood, and thus, not in routine clinical practice. Validated detection technologies that are able to capture CTCs undergoing epithelial-mesenchymal transition are needed. This will aid in the capture of heterogeneous CTCs, which can be compiled as new targets for the current food and drug administration-cleared CellSearch® system. Recent studies on CTCs in HNSCC with the CellSearch® have shown variable data. Therefore, there is an immediate need for large clinical trials encompassing a suite of biomarkers capturing CTCs in HNSCC, before CTCs can be used as prognostic markers in HNSCC patient management.
Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais/sangue , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/mortalidade , Transição Epitelial-Mesenquimal , Neoplasias de Cabeça e Pescoço/sangue , Neoplasias de Cabeça e Pescoço/mortalidade , HumanosRESUMO
BACKGROUND: The EphB4 receptor tyrosine kinase is overexpressed in many cancers including prostate cancer. The molecular mechanisms by which this ephrin receptor influences cancer progression are complex as there are tumor-promoting ligand-independent mechanisms in place as well as ligand-dependent tumor suppressive pathways. METHODS: We employed transient knockdown of EPHB4 in prostate cancer cells, coupled with gene microarray analysis, to identify genes that were regulated by EPHB4 and may represent linked tumor-promoting factors. We validated target genes using qRT-PCR and employed functional assays to determine their role in prostate cancer migration and invasion. RESULTS: We discovered that over 500 genes were deregulated upon EPHB4 siRNA knockdown, with integrin ß8 (ITGB8) being the top hit (29-fold down-regulated compared to negative non-silencing siRNA). Gene ontology analysis found that the process of cell adhesion was highly deregulated and two other integrin genes, ITGA3 and ITGA10, were also differentially expressed. In parallel, we also discovered that over-expression of EPHB4 led to a concomitant increase in ITGB8 expression. In silico analysis of a prostate cancer progression microarray publically available in the Oncomine database showed that both EPHB4 and ITGB8 are highly expressed in prostatic intraepithelial neoplasia, the precursor to prostate cancer. Knockdown of ITGB8 in PC-3 and 22Rv1 prostate cancer cells in vitro resulted in significant reduction of cell migration and invasion. CONCLUSIONS: These results reveal that EphB4 regulates integrin ß8 expression and that integrin ß8 plays a hitherto unrecognized role in the motility of prostate cancer cells and thus targeting integrin ß8 may be a new treatment strategy for prostate cancer.
Assuntos
Regulação Neoplásica da Expressão Gênica , Cadeias beta de Integrinas/biossíntese , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptor EphB4/fisiologia , Linhagem Celular Tumoral , Humanos , Masculino , Receptores Proteína Tirosina Quinases/fisiologiaRESUMO
OBJECTIVE: To provide an up-to-date summary of current literature on the management of adverse effects of androgen-deprivation therapy (ADT). PATIENTS AND METHODS: All relevant medical literature on men with prostate cancer treated with ADT from 2005 to 2014, and older relevant papers, were reviewed. Recent health advisory statements from the Australian government, societies and advocacy groups have been incorporated to the document. RESULTS: There are numerous adverse effects of ADT that require pro-active prevention and treatment. Ranging from cardiovascular disease, diabetes and osteoporosis, to depression, cognitive decline and sexual dysfunction, the range of adverse effects is wide. Baseline assessment, monitoring, prevention and consultation from a multidisciplinary team are important in minimising the harm from ADT. CONCLUSIONS: This review provides a series of practical recommendations to assist with managing the adverse effects of ADT.
Assuntos
Antagonistas de Androgênios/efeitos adversos , Antineoplásicos/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/terapia , Neoplasias da Próstata/tratamento farmacológico , Antagonistas de Androgênios/uso terapêutico , Antineoplásicos/uso terapêutico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Humanos , MasculinoRESUMO
In order to identify new anticancer compounds from nature, a prefractionated library derived from Australian endemic plants was generated and screened against the prostate cancer cell line LNCaP using a metabolic assay. Fractions from the seeds, leaves, and wood of Anopterus macleayanus showed cytotoxic activity and were subsequently investigated using a combination of bioassay-guided fractionation and mass-directed isolation. This led to the identification of four new diterpenoid alkaloids, 6α-acetoxyanopterine (1), 4'-hydroxy-6α-acetoxyanopterine (2), 4'-hydroxyanopterine (3), and 11α-benzoylanopterine (4), along with four known compounds, anopterine (5), 7ß-hydroxyanopterine (6), 7ß,4'-dihydroxyanopterine (7), and 7ß-hydroxy-11α-benzoylanopterine (8); all compounds were purified as their trifluoroacetate salt. The chemical structures of 1-8 were elucidated after analysis of 1D/2D NMR and MS data. Compounds 1-8 were evaluated for cytotoxic activity against a panel of human prostate cancer cells (LNCaP, C4-2B, and DuCaP) and nonmalignant cell lines (BPH-1 and WPMY-1), using a live-cell imaging system and a metabolic assay. All compounds showed potent cytotoxicity with IC50 values of <400 nM; compound 1 was the most active natural product from this series, with an IC50 value of 3.1 nM toward the LNCaP cell line. The live-cell imaging assay on 1-8 showed a concentration- and time-dependent effect on the cell morphology and proliferation of LNCaP cells.
Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Magnoliopsida/química , Antineoplásicos Fitogênicos/química , Austrália , Diterpenos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Masculino , Estrutura Molecular , Folhas de Planta/química , Neoplasias da Próstata/tratamento farmacológico , Floresta Úmida , Sementes/química , Madeira/químicaRESUMO
Eight new dihydro-ß-agarofurans, denhaminols A-H (1-8), were isolated from the leaves of the Australian rainforest tree Denhamia celastroides. The chemical structures of 1-8 were elucidated following analysis of 1D/2D NMR and MS data. The absolute configuration of denhaminol A (1) was determined by single-crystal X-ray crystallography. All compounds were evaluated for cytotoxic activity against the human prostate cancer cell line LNCaP, using live-cell imaging and metabolic assays. Denhaminols A (1) and G (7) were also tested for their effects on the lipid content of LNCaP cells. This is the first report of secondary metabolites from D. celastroides.
Assuntos
Celastraceae/química , Floresta Úmida , Sesquiterpenos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Austrália , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Conformação Molecular , Estrutura Molecular , Folhas de Planta/química , Sesquiterpenos/química , Sesquiterpenos/farmacologiaRESUMO
The fungal metabolite 3-chloro-4-hydroxyphenylacetic acid (1) was utilized in the generation of a unique drug-like screening library using parallel solution-phase synthesis. A 20-membered amide library (3-22) was generated by first converting 1 to methyl (3-chloro-4-hydroxyphenyl)acetate (2), then reacting this scaffold with a diverse series of primary amines via a solvent-free aminolysis procedure. The structures of the synthetic analogues (3-22) were elucidated by spectroscopic data analysis. The structures of compounds 8, 12, and 22 were confirmed by single X-ray crystallographic analysis. All compounds were evaluated for cytotoxicity against a human prostate cancer cell line (LNCaP) and for antiparasitic activity toward Trypanosoma brucei brucei and Plasmodium falciparum and showed no significant activity at 10 µM. The library was also tested for effects on the lipid content of LNCaP and PC-3 prostate cancer cells, and it was demonstrated that the fluorobenzyl analogues (12-14) significantly reduced cellular phospholipid and neutral lipid levels.