Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(6): 2491-2499, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33417448

RESUMO

The discovery of building blocks offers new opportunities to develop and control properties of extended solids. Compounds with fluorite-type Bi2O2 blocks host various properties including lead-free ferroelectrics and photocatalysts. In this study, we show that triple-layered Bi2MO4 blocks (M = Bi, La, Y) in Bi2MO4Cl allow, unlike double-layered Bi2O2 blocks, to extensively control the conduction band. Depending on M, the Bi2MO4 block is truncated by Bi-O bond breaking, resulting in a series of n-zigzag chain structures (n = 1, 2, ∞ for M = Bi, La, Y, respectively). Thus, formed chain structures are responsible for the variation in the conduction band minimum (-0.36 to -0.94 V vs SHE), which is correlated to the presence or absence of mirror symmetry at Bi. Bi2YO4Cl shows higher photoconductivity than the most efficient Bi2O2-based photocatalyst with promising visible-light photocatalytic activity for water splitting. This study expands the possibilities of thickening (2D to 3D) and cutting (2D to 1D) fluorite-based blocks toward desired photocatalysis and other functions.

2.
Inorg Chem ; 60(17): 12664-12670, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34428016

RESUMO

Bi2(NCN)3, the first binary pnictogen carbodiimide, and its ammonia derivative Bi2(NCN)3·NH3 have been prepared via nonaqueous liquid-state low-temperature ammonolysis. The crystal structure of Bi2(NCN)3·NH3 in space group Cc solved via single-crystal X-ray diffraction corresponds to a two-dimensional-like motif with layers of NCN2- alternating with honeycomb-like layers of edge-sharing distorted BiN6 octahedra, half of which are also coordinated by molecular ammonia occupying the octahedral holes. By contrast, Bi2(NCN)3 adopts a higher-symmetric C2/c structure with a single Bi position and stronger distortion but empty octahedral voids. In both cases, Bi3+ and its 6s2 lone pair are well mirrored by antibonding Bi-N interactions below the Fermi level. Density functional theory calculations reveal an exothermic reaction for the intercalation of NH3 into Bi2(NCN)3, consistent with the preferential formation of Bi2(NCN)3·NH3 in the presence of ammonia. A Bärnighausen tree shows both compounds to be hettotypic derivatives of the R3̅c M2(NCN)3 corundum structure that express highly distorted hexagonal-close-packed layers of NCN2- in order to accommodate the aspherical Bi3+ cations. Although Bi2(NCN)3 does not resemble the isovalent Bi2Se3 in forming two-dimensional layers and a topological insulator, theory suggests a driving force for the spontaneous formation of Bi2Se3/Bi2(NCN)3 sandwiches and a conducting surface state arising within the uppermost Bi2(NCN)3 layer.

3.
J Comput Chem ; 41(21): 1931-1940, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32531113

RESUMO

We present an update on recently developed methodology and functionality in the computer program Local Orbital Basis Suite Toward Electronic-Structure Reconstruction (LOBSTER) for chemical-bonding analysis in periodic systems. LOBSTER is based on an analytic projection from projector-augmented wave (PAW) density-functional theory (DFT) computations (Maintz et al., J. Comput. Chem. 2013, 34, 2557), reconstructing chemical information in terms of local, auxiliary atomic orbitals and thereby opening the output of PAW-based DFT codes to chemical interpretation. We demonstrate how LOBSTER has been improved by taking into account time-reversal symmetry, thereby speeding up the DFT and LOBSTER calculations by a factor of 2. Over the recent years, the functionalities have also been continually expanded, including accurate projected densities of states (DOSs), crystal orbital Hamilton population (COHP) analysis, atomic and orbital charges, gross populations, and the recently introduced k-dependent COHP. The software is offered free-of-charge for non-commercial research.

4.
J Comput Chem ; 40(18): 1693-1700, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30889285

RESUMO

Identifying strategies for beneficial band engineering is crucial for the optimization of thermoelectric (TE) materials. In this study, we demonstrate the beneficial effects of ionic dopants on n-type Mg3 Sb2 . Using the band-resolved projected crystal orbital Hamilton population, the covalent characters of the bonding between Mg atoms at different sites are observed. By partially substituting the Mg at the octahedral sites with more ionic dopants, such as Ca and Yb, the conduction band minimum (CBM) of Mg3 Sb2 is altered to be more anisotropic with an enhanced band degeneracy of 7. The CBM density of states of doped Mg3 Sb2 with these dopants is significantly enlarged by band engineering. The improved Seebeck coefficients and power factors, together with the reduced lattice thermal conductivities, imply that the partial introduction of more ionic dopants in Mg3 Sb2 is a general solution for its n-type TE performance. © 2019 Wiley Periodicals, Inc.

5.
Angew Chem Int Ed Engl ; 58(5): 1432-1436, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30536686

RESUMO

Due to the weak oxidative force of N2 , nitrides are only typically formed with the less electronegative metals. Meeting this challenge, we here present Pb2 Si5 N8 , the first nitridosilicate containing highly electron-affine cations of a metal from the right side of the Zintl border. By using advanced synchrotron X-ray diffraction, the crystal structure was determined from a tiny single crystal of 1×3×3 µm3 in size, revealing a significantly different bonding situation compared to all other nitridosilicates known so far. Indeed, DFT calculations confirm distinct amounts of covalency not only between Pb and N but also between formal Pb2+ cations. Thus, unprecedented cationic Pb2 dumbbells with a stretching vibration at 117 cm-1 were found in Pb2 Si5 N8 , the first representative of a crystallographically elucidated lead nitride, stabilized by high amounts of covalency.

6.
J Phys Chem A ; 121(40): 7778-7786, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28933545

RESUMO

We have performed an in-depth study of the chemical bonding in manganese oxide (MnO) and carbodiimide (MnNCN) from correlated spin-polarized density functional calculations. The chemical-bonding data were produced using the LOBSTER package, which has recently been enabled to process PAW-based output from Quantum ESPRESSO. Our results show that the ground states of MnO and MnNCN are similar, namely, antiferromagnetic structures whose axes are the MnO cubic [111] and the MnNCN hexagonal [001] axes, in agreement with experimental results. The results also evidence MnNCN being more covalent than MnO, in harmony with chemical intuition and spectroscopic data. In addition, the crystal orbital Hamilton population (COHP) analysis evidences that adopting the ground-state magnetic structures by MnO and MnNCN makes the cation-anion bonds optimized and annihilates obvious instability issues, that is, the existence of antibonding states in the vicinity of the Fermi level. We also detail the interactions involved in the systems using the recently introduced density-of-energy analysis and by partitioning the total and band-structure energies. While it is trivial that the total energy points toward the true magnetic ground state taken, the COHP integral of the metal-nonmetal bond is also capable of correctly delivering that particular information.

7.
Phys Rev Lett ; 115(19): 197203, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588410

RESUMO

We investigate the current debate on the Mn valence in Ga(1-x)Mn(x)N, a diluted magnetic semiconductor (DMS) with a potentially high Curie temperature. From a first-principles Wannier-function analysis, we unambiguously find the Mn valence to be close to 2+ (d(5)), but in a mixed spin configuration with average magnetic moments of 4µ(B). By integrating out high-energy degrees of freedom differently, we further derive for the first time from first-principles two low-energy pictures that reflect the intrinsic dual nature of the doped holes in the DMS: (1) an effective d(4) picture ideal for local physics, and (2) an effective d(5) picture suitable for extended properties. In the latter, our results further reveal a few novel physical effects, and pave the way for future realistic studies of magnetism. Our study not only resolves one of the outstanding key controversies of the field, but also exemplifies the general need for multiple effective descriptions to account for the rich low-energy physics in many-body systems in general.

8.
Chempluschem ; 87(11): e202200123, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35762686

RESUMO

Understanding crystalline structures based on their chemical bonding is growing in importance. In this context, chemical bonding can be studied with the Crystal Orbital Hamilton Population (COHP), allowing for quantifying interatomic bond strength. Here we present a new set of tools to automate the calculation of COHP and analyze the results. We use the program packages VASP and LOBSTER, and the Python packages atomate and pymatgen. The analysis produced by our tools includes plots, a textual description, and key data in a machine-readable format. To illustrate those capabilities, we have selected simple test compounds (NaCl, GaN), the oxynitrides BaTaO2 N, CaTaO2 N, and SrTaO2 N, and the thermoelectric material Yb14 Mn1 Sb11 . We show correlations between bond strengths and stabilities in the oxynitrides and the influence of the Mn-Sb bonds on the magnetism in Yb14 Mn1 Sb11 . Our contribution enables high-throughput bonding analysis and will facilitate the use of bonding information for machine learning studies.

9.
Chempluschem ; 87(11): e202200246, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35946984

RESUMO

Invited for this month's cover are researchers from Bundesanstalt für Materialforschung und -prüfung (Federal Institute for Materials Research and Testing) in Germany, Friedrich Schiller University Jena, Université catholique de Louvain, University of Oregon, Science & Technology Facilities Council, RWTH Aachen University, Hoffmann Institute of Advanced Materials, and Dartmouth College. The cover picture shows a workflow for automatic bonding analysis with Python tools (green python). The bonding analysis itself is performed with the program LOBSTER (red lobster). The starting point is a crystal structure, and the results are automatic assessments of the bonding situation based on Crystal Orbital Hamilton Populations (COHP), including automatic plots and text outputs. Coordination environments and charges are also assessed. More information can be found in the Research Article by J. George, G. Hautier, and co-workers.

10.
Adv Mater ; 32(49): e2005533, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33135228

RESUMO

Understanding the nature of chemical bonding in solids is crucial to comprehend the physical and chemical properties of a given compound. To explore changes in chemical bonding in lead chalcogenides (PbX, where X = Te, Se, S, O), a combination of property-, bond-breaking-, and quantum-mechanical bonding descriptors are applied. The outcome of the explorations reveals an electron-transfer-driven transition from metavalent bonding in PbX (X = Te, Se, S) to iono-covalent bonding in ß-PbO. Metavalent bonding is characterized by adjacent atoms being held together by sharing about a single electron (ES ≈ 1) and small electron transfer (ET). The transition from metavalent to iono-covalent bonding manifests itself in clear changes in these quantum-mechanical descriptors (ES and ET), as well as in property-based descriptors (i.e., Born effective charge (Z*), dielectric function ε(ω), effective coordination number (ECoN), and mode-specific Grüneisen parameter (γTO )), and in bond-breaking descriptors. Metavalent bonding collapses if significant charge localization occurs at the ion cores (ET) and/or in the interatomic region (ES). Predominantly changing the degree of electron transfer opens possibilities to tailor material properties such as the chemical bond (Z*) and electronic (ε∞ ) polarizability, optical bandgap, and optical interband transitions characterized by ε2 (ω). Hence, the insights gained from this study highlight the technological relevance of the concept of metavalent bonding and its potential for materials design.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa