Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(8): 3999-4012, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32201888

RESUMO

In eukaryotic cells, with the exception of the specialized genomes of mitochondria and plastids, all genetic information is sequestered within the nucleus. This arrangement imposes constraints on how the information can be tailored for different cellular regions, particularly in cells with complex morphologies like neurons. Although messenger RNAs (mRNAs), and the proteins that they encode, can be differentially sorted between cellular regions, the information itself does not change. RNA editing by adenosine deamination can alter the genome's blueprint by recoding mRNAs; however, this process too is thought to be restricted to the nucleus. In this work, we show that ADAR2 (adenosine deaminase that acts on RNA), an RNA editing enzyme, is expressed outside of the nucleus in squid neurons. Furthermore, purified axoplasm exhibits adenosine-to-inosine activity and can specifically edit adenosines in a known substrate. Finally, a transcriptome-wide analysis of RNA editing reveals that tens of thousands of editing sites (>70% of all sites) are edited more extensively in the squid giant axon than in its cell bodies. These results indicate that within a neuron RNA editing can recode genetic information in a region-specific manner.


Assuntos
Adenosina Desaminase/metabolismo , Neurônios/enzimologia , Edição de RNA , Adenosina/metabolismo , Animais , Axônios/enzimologia , Citoplasma/enzimologia , Decapodiformes/enzimologia , Células HEK293 , Humanos , Inosina/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Sinapses/enzimologia
2.
Neurobiol Learn Mem ; 175: 107295, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32822864

RESUMO

The hippocampus plays an essential role in the formation and retrieval of episodic memories in humans and contextual memories in animals. However, amnesia is not always observed when this structure is compromised. To determine why this is the case, we compared the effects of several different circuit manipulations on memory retrieval and hippocampal activity. Mice were first trained on context fear conditioning and then optogenetic and chemogenetic tools were used to alter activity during memory retrieval. We found that retrieval was only impaired when manipulations caused widespread changes (increases or decreases) in hippocampal activity. Widespread increases occurred when pyramidal cells were excited and widespread decreases were found when GABAergic neurons were stimulated. Direct hyperpolarization of excitatory neurons only moderately reduced activity and did not produce amnesia. Surprisingly, widespread decreases in hippocampal activity did not prevent retrieval if they occurred gradually prior to testing. This suggests that intact brain regions can express contextual memories if they are given adequate time to compensate for the loss of the hippocampus.


Assuntos
Amnésia/fisiopatologia , Condicionamento Psicológico/fisiologia , Medo , Hipocampo/fisiopatologia , Rememoração Mental/fisiologia , Animais , Drogas Desenhadas , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Hipocampo/citologia , Memória Episódica , Camundongos , Optogenética , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptores de Droga
3.
Neuropsychopharmacology ; 44(2): 408-414, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29849054

RESUMO

Prior learning can modify the plasticity mechanisms that are used to encode new information. For example, NMDA receptor (NMDAR) activation is typically required for new spatial and contextual learning in the hippocampus. However, once animals have acquired this information, they can learn new tasks even if NMDARs are blocked. This finding suggests that behavioral training alters cellular plasticity mechanisms such that NMDARs are not required for subsequent learning. The mechanisms that mediate this change are currently unknown. To address this issue, we tested the idea that changes in intrinsic excitability (induced by learning) facilitate the encoding of new memories via metabotropic glutamate receptor (mGluR) activation. Consistent with this hypothesis, hippocampal neurons exhibited increases in intrinsic excitability after learning that lasted for several days. This increase was selective and only observed in neurons that were activated by the learning event. When animals were trained on a new task during this period, excitable neurons were reactivated and memory formation required the activation of mGluRs instead of NMDARs. These data suggest that increases in intrinsic excitability may serve as a metaplastic mechanism for memory formation.


Assuntos
Condicionamento Clássico/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Valina/análogos & derivados , Valina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa