Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 452(7187): 624-8, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18311129

RESUMO

Microsporidia are highly specialized obligate intracellular parasites of other eukaryotes (including humans) that show extreme reduction at the molecular, cellular and biochemical level. Although microsporidia have long been considered as early branching eukaryotes that lack mitochondria, they have recently been shown to contain a tiny mitochondrial remnant called a mitosome. The function of the mitosome is unknown, because microsporidians lack the genes for canonical mitochondrial functions, such as aerobic respiration and haem biosynthesis. However, microsporidial genomes encode several components of the mitochondrial iron-sulphur (Fe-S) cluster assembly machinery. Here we provide experimental insights into the metabolic function and localization of these proteins. We cloned, functionally characterized and localized homologues of several central mitochondrial Fe-S cluster assembly components for the microsporidians Encephalitozoon cuniculi and Trachipleistophora hominis. Several microsporidial proteins can functionally replace their yeast counterparts in Fe-S protein biogenesis. In E. cuniculi, the iron (frataxin) and sulphur (cysteine desulphurase, Nfs1) donors and the scaffold protein (Isu1) co-localize with mitochondrial Hsp70 to the mitosome, consistent with it being the functional site for Fe-S cluster biosynthesis. In T. hominis, mitochondrial Hsp70 and the essential sulphur donor (Nfs1) are still in the mitosome, but surprisingly the main pools of Isu1 and frataxin are cytosolic, creating a conundrum of how these key components of Fe-S cluster biosynthesis coordinate their function. Together, our studies identify the essential biosynthetic process of Fe-S protein assembly as a key function of microsporidian mitosomes.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Microsporídios/metabolismo , Animais , Linhagem Celular , Clonagem Molecular , Proteínas Fúngicas/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Microsporídios/citologia , Microsporídios/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Coelhos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Frataxina
2.
Mol Cell Biol ; 24(11): 4848-57, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15143178

RESUMO

Iron-sulfur (Fe/S) proteins are located in mitochondria, cytosol, and nucleus. Mitochondrial Fe/S proteins are matured by the iron-sulfur cluster (ISC) assembly machinery. Little is known about the formation of Fe/S proteins in the cytosol and nucleus. A function of mitochondria in cytosolic Fe/S protein maturation has been noted, but small amounts of some ISC components have been detected outside mitochondria. Here, we studied the highly conserved yeast proteins Isu1p and Isu2p, which provide a scaffold for Fe/S cluster synthesis. We asked whether the Isu proteins are needed for biosynthesis of cytosolic Fe/S clusters and in which subcellular compartment the Isu proteins are required. The Isu proteins were found to be essential for de novo biosynthesis of both mitochondrial and cytosolic Fe/S proteins. Several lines of evidence indicate that Isu1p and Isu2p have to be located inside mitochondria in order to perform their function in cytosolic Fe/S protein maturation. We were unable to mislocalize Isu1p to the cytosol due to the presence of multiple, independent mitochondrial targeting signals in this protein. Further, the bacterial homologue IscU and the human Isu proteins (partially) complemented the defects of yeast Isu protein-depleted cells in growth rate, Fe/S protein biogenesis, and iron homeostasis, yet only after targeting to mitochondria. Together, our data suggest that the Isu proteins need to be localized in mitochondria to fulfill their functional requirement in Fe/S protein maturation in the cytosol.


Assuntos
Proteínas Ferro-Enxofre/biossíntese , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas Mitocondriais , Mutação , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Membr Biol ; 23(2): 173-84, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16754360

RESUMO

The ATP binding cassette (ABC) transporter Atm1p of the mitochondrial inner membrane performs crucial roles in both the biogenesis of cytosolic/nuclear iron-sulfur proteins and cellular iron homeostasis. Since the function of the mitochondrial iron-sulfur cluster (ISC) assembly machinery is also required for these two processes, Atm1p is thought to translocate a still unknown product of this pathway to the cytosol. Here, we provide a detailed in vitro characterization of Atm1p in order to better understand its function. Atm1p was purified using an expression system in E. coli. The detergent-solubilised protein exhibits a stable ATPase activity. Reconstitution of Atm1p into proteoliposomes allowed us to determine the biochemical characteristics of the ATPase such as: (i) the strong inhibition by the transition state analogue vanadate, (ii) a Km value of 0.1 mM, and (iii) a turnover number of 127 min-1. The ATPase activity of ABC transporters is generally stimulated by their specific substrate. We used this property to define the chemical properties of the substrate transported by Atm1p. ATPase hydrolysis by Atm1p-containing proteoliposomes was specifically increased 3-5-fold by thiol-containing compounds, in particular by micromolar concentrations of cysteine thiol groups in peptides, even though Atm1p is not a general peptide transporter such as yeast Mdl1p or mammalian TAP which share sequence similarity with Atm1p. We speculate that the physiological substrate of Atm1p may contain multiple sulfhydryl groups in a peptidic environment.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Adenosina Trifosfatases/química , Proteínas Fúngicas/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Citosol/metabolismo , Detergentes/química , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/química , Cinética , Lipossomos/química , Mitocôndrias/metabolismo , Proteolipídeos/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Compostos de Sulfidrila/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa