Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Nature ; 615(7954): 858-865, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949201

RESUMO

Human society is dependent on nature1,2, but whether our ecological foundations are at risk remains unknown in the absence of systematic monitoring of species' populations3. Knowledge of species fluctuations is particularly inadequate in the marine realm4. Here we assess the population trends of 1,057 common shallow reef species from multiple phyla at 1,636 sites around Australia over the past decade. Most populations decreased over this period, including many tropical fishes, temperate invertebrates (particularly echinoderms) and southwestern Australian macroalgae, whereas coral populations remained relatively stable. Population declines typically followed heatwave years, when local water temperatures were more than 0.5 °C above temperatures in 2008. Following heatwaves5,6, species abundances generally tended to decline near warm range edges, and increase near cool range edges. More than 30% of shallow invertebrate species in cool latitudes exhibited high extinction risk, with rapidly declining populations trapped by deep ocean barriers, preventing poleward retreat as temperatures rise. Greater conservation effort is needed to safeguard temperate marine ecosystems, which are disproportionately threatened and include species with deep evolutionary roots. Fundamental among such efforts, and broader societal needs to efficiently adapt to interacting anthropogenic and natural pressures, is greatly expanded monitoring of species' population trends7,8.


Assuntos
Antozoários , Recifes de Corais , Calor Extremo , Peixes , Aquecimento Global , Invertebrados , Oceanos e Mares , Água do Mar , Alga Marinha , Animais , Austrália , Peixes/classificação , Invertebrados/classificação , Aquecimento Global/estatística & dados numéricos , Alga Marinha/classificação , Dinâmica Populacional , Densidade Demográfica , Água do Mar/análise , Extinção Biológica , Conservação dos Recursos Naturais/tendências , Equinodermos/classificação
2.
PLoS Biol ; 21(12): e3002392, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079442

RESUMO

The multifaceted effects of climate change on physical and biogeochemical processes are rapidly altering marine ecosystems but often are considered in isolation, leaving our understanding of interactions between these drivers of ecosystem change relatively poor. This is particularly true for shallow coastal ecosystems, which are fuelled by a combination of distinct pelagic and benthic energy pathways that may respond to climate change in fundamentally distinct ways. The fish production supported by these systems is likely to be impacted by climate change differently to those of offshore and shelf ecosystems, which have relatively simpler food webs and mostly lack benthic primary production sources. We developed a novel, multispecies size spectrum model for shallow coastal reefs, specifically designed to simulate potential interactive outcomes of changing benthic and pelagic energy inputs and temperatures and calculate the relative importance of these variables for the fish community. Our model, calibrated using field data from an extensive temperate reef monitoring program, predicts that changes in resource levels will have much stronger impacts on fish biomass and yields than changes driven by physiological responses to temperature. Under increased plankton abundance, species in all fish trophic groups were predicted to increase in biomass, average size, and yields. By contrast, changes in benthic resources produced variable responses across fish trophic groups. Increased benthic resources led to increasing benthivorous and piscivorous fish biomasses, yields, and mean body sizes, but biomass decreases among herbivore and planktivore species. When resource changes were combined with warming seas, physiological responses generally decreased species' biomass and yields. Our results suggest that understanding changes in benthic production and its implications for coastal fisheries should be a priority research area. Our modified size spectrum model provides a framework for further study of benthic and pelagic energy pathways that can be easily adapted to other ecosystems.


Assuntos
Mudança Climática , Ecossistema , Animais , Cadeia Alimentar , Biomassa , Oceanos e Mares , Peixes/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(39): e2208390119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122225

RESUMO

In bacterial cells, DNA damage tolerance is manifested by the action of translesion DNA polymerases that can synthesize DNA across template lesions that typically block the replicative DNA polymerase III. It has been suggested that one of these translesion DNA synthesis DNA polymerases, DNA polymerase IV, can either act in concert with the replisome, switching places on the ß sliding clamp with DNA polymerase III to bypass the template damage, or act subsequent to the replisome skipping over the template lesion in the gap in nascent DNA left behind as the replisome continues downstream. Evidence exists in support of both mechanisms. Using single-molecule analyses, we show that DNA polymerase IV associates with the replisome in a concentration-dependent manner and remains associated over long stretches of replication fork progression under unstressed conditions. This association slows the replisome, requires DNA polymerase IV binding to the ß clamp but not its catalytic activity, and is reinforced by the presence of the γ subunit of the ß clamp-loading DnaX complex in the DNA polymerase III holoenzyme. Thus, DNA damage is not required for association of DNA polymerase IV with the replisome. We suggest that under stress conditions such as induction of the SOS response, the association of DNA polymerase IV with the replisome provides both a surveillance/bypass mechanism and a means to slow replication fork progression, thereby reducing the frequency of collisions with template damage and the overall mutagenic potential.


Assuntos
DNA Polimerase beta , DNA/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Holoenzimas
4.
J Fish Biol ; 104(4): 1122-1135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38193568

RESUMO

Population estimates are required for effective conservation of many rare marine species, but can be difficult to obtain. The critically endangered red handfish (Thymichthys politus) is a coastal anglerfish known only from two fragmented populations in southeast Tasmania, Australia. It is at a high risk of extinction due to low numbers, loss of habitat, and the impacts of climate change. To aid conservation efforts, we provide the first empirical population size estimates of red handfish and investigate other important aspects of the species' life history, such as growth, habitat association, and movement. We surveyed both red handfish local populations via underwater visual census on scuba over 3 years and used photographic mark-recapture techniques to estimate biological parameters. In 2020, the local adult population size was estimated to be 94 (95% confidence interval [CI] 40-231) adults at one site, and 7 (95% CI 5-10) at the other site, suggesting an estimated global population of 101 adults. Movement of individuals was extremely limited at 48.5 m (± 77.7 S.D.) per year. We also found evidence of declining fish density, a declining proportion of juveniles, and increasing average fish size during the study. These results provide a serious warning that red handfish are likely sliding toward extinction, and highlight the urgent need to expand efforts for ex situ captive breeding to bolster numbers in the wild and maintain captive insurance populations, and to protect vital habitat to safeguard the species' ongoing survival in the wild.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Conservação dos Recursos Naturais/métodos , Extinção Biológica , Peixes , Ecossistema
5.
Nature ; 528(7580): 88-92, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26560025

RESUMO

A critical assumption underlying projections of biodiversity change associated with global warming is that ecological communities comprise balanced mixes of warm-affinity and cool-affinity species which, on average, approximate local environmental temperatures. Nevertheless, here we find that most shallow water marine species occupy broad thermal distributions that are aggregated in either temperate or tropical realms. These distributional trends result in ocean-scale spatial thermal biases, where communities are dominated by species with warmer or cooler affinity than local environmental temperatures. We use community-level thermal deviations from local temperatures as a form of sensitivity to warming, and combine these with projected ocean warming data to predict warming-related loss of species from present-day communities over the next century. Large changes in local species composition appear likely, and proximity to thermal limits, as inferred from present-day species' distributional ranges, outweighs spatial variation in warming rates in contributing to predicted rates of local species loss.


Assuntos
Organismos Aquáticos/fisiologia , Biodiversidade , Aquecimento Global , Água do Mar , Temperatura , Aclimatação/fisiologia , Animais , Recifes de Corais , Peixes/fisiologia , Mapeamento Geográfico , Invertebrados/fisiologia , Filogenia , Estações do Ano , Especificidade da Espécie , Clima Tropical
6.
Nature ; 506(7487): 216-20, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24499817

RESUMO

In line with global targets agreed under the Convention on Biological Diversity, the number of marine protected areas (MPAs) is increasing rapidly, yet socio-economic benefits generated by MPAs remain difficult to predict and under debate. MPAs often fail to reach their full potential as a consequence of factors such as illegal harvesting, regulations that legally allow detrimental harvesting, or emigration of animals outside boundaries because of continuous habitat or inadequate size of reserve. Here we show that the conservation benefits of 87 MPAs investigated worldwide increase exponentially with the accumulation of five key features: no take, well enforced, old (>10 years), large (>100 km(2)), and isolated by deep water or sand. Using effective MPAs with four or five key features as an unfished standard, comparisons of underwater survey data from effective MPAs with predictions based on survey data from fished coasts indicate that total fish biomass has declined about two-thirds from historical baselines as a result of fishing. Effective MPAs also had twice as many large (>250 mm total length) fish species per transect, five times more large fish biomass, and fourteen times more shark biomass than fished areas. Most (59%) of the MPAs studied had only one or two key features and were not ecologically distinguishable from fished sites. Our results show that global conservation targets based on area alone will not optimize protection of marine biodiversity. More emphasis is needed on better MPA design, durable management and compliance to ensure that MPAs achieve their desired conservation value.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Ecologia/estatística & dados numéricos , Ecossistema , Pesqueiros/estatística & dados numéricos , Peixes/fisiologia , Animais , Organismos Aquáticos/fisiologia , Biodiversidade , Biomassa , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Recifes de Corais , Ecologia/economia , Ecologia/legislação & jurisprudência , Ecologia/métodos , Pesqueiros/legislação & jurisprudência , Pesqueiros/normas , Biologia Marinha/economia , Biologia Marinha/legislação & jurisprudência , Biologia Marinha/métodos , Biologia Marinha/estatística & dados numéricos , Água do Mar , Tubarões , Dióxido de Silício , Fatores de Tempo
7.
Nucleic Acids Res ; 44(6): 2727-41, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26762979

RESUMO

In bacteria, the repair of double-stranded DNA breaks is modulated by Chi sequences. These are recognised by helicase-nuclease complexes that process DNA ends for homologous recombination. Chi activates recombination by changing the biochemical properties of the helicase-nuclease, transforming it from a destructive exonuclease into a recombination-promoting repair enzyme. This transition is thought to be controlled by the Chi-dependent opening of a molecular latch, which enables part of the DNA substrate to evade degradation beyond Chi. Here, we show that disruption of the latch improves Chi recognition efficiency and stabilizes the interaction of AddAB with Chi, even in mutants that are impaired for Chi binding. Chi recognition elicits a structural change in AddAB that maps to a region of AddB which resembles a helicase domain, and which harbours both the Chi recognition locus and the latch. Mutation of the latch potentiates the change and moderately reduces the duration of a translocation pause at Chi. However, this mutant displays properties of Chi-modified AddAB even in the complete absence of bona fide hotspot sequences. The results are used to develop a model for AddAB regulation in which allosteric communication between Chi binding and latch opening ensures quality control during recombination hotspot recognition.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , DNA Helicases/química , DNA Bacteriano/química , Exodesoxirribonucleases/química , Reparo de DNA por Recombinação , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Expressão Gênica , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
Proc Biol Sci ; 284(1856)2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28592671

RESUMO

Shifts in the abundance and location of species are restructuring life on the Earth, presenting the need to build resilience into our natural systems. Here, we tested if protection from fishing promotes community resilience in temperate reef communities undergoing rapid warming in Tasmania. Regardless of protection status, we detected a signature of warming in the brown macroalgae, invertebrates and fishes, through increases in the local richness and abundance of warm-affinity species. Even so, responses in protected communities diverged from exploited communities. At the local scale, the number of cool-affinity fishes and canopy-forming algal species increased following protection, even though the observation window fell within a period of warming. At the same time, exploited communities gained turf algal and sessile invertebrate species. We further found that the recovery of predator populations following protection leads to marked declines in mobile invertebrates-this trend could be incorrectly attributed to warming without contextual data quantifying community change across trophic levels. By comparing long-term change in exploited and protected reefs, we empirically demonstrate the role of biological interactions in both facilitating and resisting climate-related biodiversity change. We further highlight the potential for trophic interactions to alter the progression of both range expansions and contractions.


Assuntos
Biodiversidade , Mudança Climática , Recifes de Corais , Animais , Peixes , Invertebrados , Phaeophyceae , Tasmânia
9.
Bioscience ; 67(2): 134-146, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596615

RESUMO

Reporting progress against targets for international biodiversity agreements is hindered by a shortage of suitable biodiversity data. We describe a cost-effective system involving Reef Life Survey citizen scientists in the systematic collection of quantitative data covering multiple phyla that can underpin numerous marine biodiversity indicators at high spatial and temporal resolution. We then summarize the findings of a continental- and decadal-scale State of the Environment assessment for rocky and coral reefs based on indicators of ecosystem state relating to fishing, ocean warming, and invasive species and describing the distribution of threatened species. Fishing impacts are widespread, whereas substantial warming-related change affected some regions between 2005 and 2015. Invasive species are concentrated near harbors in southeastern Australia, and the threatened-species index is highest for the Great Australian Bight and Tasman Sea. Our approach can be applied globally to improve reporting against biodiversity targets and enhance public and policymakers' understanding of marine biodiversity trends.

11.
Sci Justice ; 57(1): 13-20, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28063580

RESUMO

Recent years have seen a significant increase in the sensitivity of DNA testing, enabling the determination of DNA profiles from low levels of cellular material. However, the increased sensitivity is in many ways a double-edged sword as background contaminating DNA generated during the manufacture of consumables and sampling devices is now being detected and may compromise the interpretation of the DNA profile results. This study initially demonstrated the effectiveness of ethylene oxide (EO) as a post-production treatment to eliminate DNA on swabs, used as a sampling device for the recovery of cellular material. Subsequently, the potential adverse effects of any residual EO remaining on the swabs on the downstream DNA analysis on both rayon and cotton swabs were investigated and the levels of remaining EO measured. Two main variables were tested: the amount of time elapsed since EO treatment of the swabs prior to use, and the time elapsed between cellular material collection and DNA analysis. Residual levels of EO were found to be below quantitation levels and therefore also international standards. The results indicated that while there was a negligible effect of EO treatment on DNA recovered from rayon swabs, there was however an adverse effect on the DNA profiles recovered from cotton swabs. The adverse effect was negatively correlated with time since EO treatment and positively correlated with time to DNA analysis.


Assuntos
Impressões Digitais de DNA , Desinfetantes , Contaminação de Equipamentos , Óxido de Etileno , Manejo de Espécimes/instrumentação , DNA/isolamento & purificação , Humanos
12.
EMBO J ; 31(6): 1568-78, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22307084

RESUMO

In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence Chi and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease. Here, we report the crystal structure of AddAB bound to DNA. The structure allows identification of a putative Chi-recognition site in an inactivated helicase domain of the AddB subunit. By generating mutant protein complexes that do not respond to Chi, we show that residues responsible for Chi recognition are located in positions equivalent to the signature motifs of a conventional helicase. Comparison with the related RecBCD complex, which recognizes a different Chi sequence, provides further insight into the structural basis for sequence-specific ssDNA recognition. The structure suggests a simple mechanism for DNA break processing, explains how AddAB and RecBCD can accomplish the same overall reaction with different sets of functional modules and reveals details of the role of an Fe-S cluster in protein stability and DNA binding.


Assuntos
DNA Helicases/química , Desoxirribonucleases/química , Exodesoxirribonucleases/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Exodesoxirribonuclease V/química , Exodesoxirribonuclease V/genética , Exodesoxirribonuclease V/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Terciária de Proteína
13.
Nucleic Acids Res ; 42(9): 5633-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24682829

RESUMO

In all domains of life, the resection of double-stranded DNA breaks to form long 3'-ssDNA overhangs in preparation for recombinational repair is catalyzed by the coordinated activities of DNA helicases and nucleases. In bacterial cells, this resection reaction is modulated by the recombination hotspot sequence Chi. The Chi sequence is recognized in cis by translocating helicase-nuclease complexes such as the Bacillus subtilis AddAB complex. Binding of Chi to AddAB results in the attenuation of nuclease activity on the 3'-terminated strand, thereby promoting recombination. In this work, we used stopped-flow methods to monitor the coupling of adenosine triphosphate (ATP) hydrolysis and DNA translocation and how this is affected by Chi recognition. We show that in the absence of Chi sequences, AddAB translocates processively on DNA at ∼2000 bp s(-1) and hydrolyses approximately 1 ATP molecule per base pair travelled. The recognition of recombination hotspots results in a sustained decrease in the translocation rate which is accompanied by a decrease in the ATP hydrolysis rate, such that the coupling between these activities and the net efficiency of DNA translocation is largely unchanged by Chi.


Assuntos
Bacillus subtilis/enzimologia , DNA Bacteriano/química , Exodesoxirribonucleases/química , Trifosfato de Adenosina/química , Bacillus subtilis/genética , DNA/química , DNA Bacteriano/genética , Hidrólise , Cinética , Recombinação Genética
14.
Proc Natl Acad Sci U S A ; 110(28): E2562-71, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798400

RESUMO

Double-stranded DNA break repair by homologous recombination is initiated by resection of free DNA ends to produce a 3'-ssDNA overhang. In bacteria, this reaction is catalyzed by helicase-nuclease complexes such as AddAB in a manner regulated by specific recombination hotspot sequences called Crossover hotspot instigator (Chi). We have used magnetic tweezers to investigate the dynamics of AddAB translocation and hotspot scanning during double-stranded DNA break resection. AddAB was prone to stochastic pausing due to transient recognition of Chi-like sequences, unveiling an antagonistic relationship between DNA translocation and sequence-specific DNA recognition. Pauses at bona fide Chi sequences were longer, were nonexponentially distributed, and resulted in an altered velocity upon restart of translocation downstream of Chi. We propose a model for the recognition of Chi sequences to explain the origin of pausing during failed and successful hotspot recognition.


Assuntos
Dano ao DNA , DNA/genética , Recombinação Genética
15.
Small ; 11(11): 1273-84, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25400244

RESUMO

Motor protein functions like adenosine triphosphate (ATP) hydrolysis or translocation along molecular substrates take place at nanometric scales and consequently depend on the amount of available thermal energy. The associated rates can hence be investigated by actively varying the temperature conditions. In this article, a thermally controlled magnetic tweezers (MT) system for single-molecule experiments at up to 40 °C is presented. Its compact thermostat module yields a precision of 0.1 °C and can in principle be tailored to any other surface-coupled microscopy technique, such as tethered particle motion (TPM), nanopore-based sensing of biomolecules, or super-resolution fluorescence imaging. The instrument is used to examine the temperature dependence of translocation along double-stranded (ds)DNA by individual copies of the protein complex AddAB, a helicase-nuclease motor involved in dsDNA break repair. Despite moderately lower mean velocities measured at sub-saturating ATP concentrations, almost identical estimates of the enzymatic reaction barrier (around 21-24 k(B)T) are obtained by comparing results from MT and stopped-flow bulk assays. Single-molecule rates approach ensemble values at optimized chemical energy conditions near the motor, which can withstand opposing loads of up to 14 piconewtons (pN). Having proven its reliability, the temperature-controlled MT described herein will eventually represent a routinely applied method within the toolbox for nano-biotechnology.


Assuntos
DNA Helicases/química , DNA/química , Magnetismo/instrumentação , Micromanipulação/instrumentação , Microscopia/instrumentação , Técnicas de Sonda Molecular/instrumentação , DNA/ultraestrutura , DNA Helicases/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento , Calefação/instrumentação , Ligação Proteica , Estresse Mecânico , Temperatura
16.
Ecology ; 95(7): 2016-25, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25163132

RESUMO

Understanding the way in which species are associated in communities is a fundamental question in ecology. Yet there remains a tension between communities as highly structured units or as coincidental collections of individualistic species. We explored these ideas using a new statistical approach that clusters species based on their environmental response: a species archetype, rather than clustering sites based on their species composition. We found groups of species that are consistently highly correlated, but that these groups are not unique to any set of locations and overlap spatially. The species present at a single site are a realization of species from the (multiple) archetype groups that are likely to be present at that location based on their response to the environment.


Assuntos
Ecossistema , Peixes/fisiologia , Invertebrados/fisiologia , Modelos Biológicos , Animais , Demografia , Oceanos e Mares , Especificidade da Espécie
17.
Ecol Appl ; 24(2): 287-99, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689141

RESUMO

To support coastal planning through improved understanding of patterns of biotic and abiotic surrogacy at broad scales, we used gradient forest modeling (GFM) to analyze and predict spatial patterns of compositional turnover of demersal fishes, macroinvertebrates, and macroalgae on shallow, temperate Australian reefs. Predictive models were first developed using environmental surrogates with estimates of prediction uncertainty, and then the efficacy of the three assemblages as biosurrogates for each other was assessed. Data from underwater visual surveys of subtidal rocky reefs were collected from the southeastern coastline of continental Australia (including South Australia and Victoria) and the northern coastline of Tasmania. These data were combined with 0.01 degree-resolution gridded environmental variables to develop statistical models of compositional turnover (beta diversity) using GFM. GFM extends the machine learning, ensemble tree-based method of random forests (RF), to allow the simultaneous modeling of multiple taxa. The models were used to generate predictions of compositional turnover for each of the three assemblages within unsurveyed areas across the 6600 km of coastline in the region of interest. The most important predictor for all three assemblages was variability in sea surface temperature (measured as standard deviation from measures taken interannually). Spatial predictions of compositional turnover within unsurveyed areas across the region of interest were remarkably congruent across the three taxa. However, the greatest uncertainty in these predictions varied in location among the different assemblages. Pairwise congruency comparisons of observed and predicted turnover among the three assemblages showed that invertebrate and macroalgal biodiversity were most similar, followed by fishes and macroalgae, and lastly fishes and invertebrate biodiversity, suggesting that of the three assemblages, macroalgae would make the best biosurrogate for both invertebrate and fish compositional turnover.


Assuntos
Recifes de Corais , Peixes/fisiologia , Invertebrados/fisiologia , Alga Marinha/fisiologia , Animais , Biodiversidade , Clima , Demografia , Peixes/classificação
18.
Conserv Biol ; 28(2): 438-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24373031

RESUMO

The global extent of macroalgal forests is declining, greatly affecting marine biodiversity at broad scales through the effects macroalgae have on ecosystem processes, habitat provision, and food web support. Networks of marine protected areas comprise one potential tool that may safeguard gene flow among macroalgal populations in the face of increasing population fragmentation caused by pollution, habitat modification, climate change, algal harvesting, trophic cascades, and other anthropogenic stressors. Optimal design of protected area networks requires knowledge of effective dispersal distances for a range of macroalgae. We conducted a global meta-analysis based on data in the published literature to determine the generality of relation between genetic differentiation and geographic distance among macroalgal populations. We also examined whether spatial genetic variation differed significantly with respect to higher taxon, life history, and habitat characteristics. We found clear evidence of population isolation by distance across a multitude of macroalgal species. Genetic and geographic distance were positively correlated across 49 studies; a modal distance of 50-100 km maintained F(ST) < 0.2. This relation was consistent for all algal divisions, life cycles, habitats, and molecular marker classes investigated. Incorporating knowledge of the spatial scales of gene flow into the design of marine protected area networks will help moderate anthropogenic increases in population isolation and inbreeding and contribute to the resilience of macroalgal forests.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Alga Marinha/fisiologia , Mudança Climática , Ecossistema , Variação Genética , Alga Marinha/genética
19.
J Phys Chem A ; 118(51): 11975-86, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25222081

RESUMO

A model Hamiltonian based on the vibronic coupling model is developed to describe the excited state dynamics of 3-pyrroline. With the use of the method of improved relaxation in conjunction with the MCTDH wavepacket propagation algorithm, vibrational eigenstates corresponding to both the axial and equatorial conformers of 3-pyrroline are calculated and subsequently used in a conformer-resolved study of the photodissociation of 3-pyrroline following excitation to its S1(3s/πσ*) and S2(3px) states. In analogy with ammonia, the excited state dynamics of both conformers of 3-pyrroline are found to be dominated by the (quasi-) planarization of the molecule in its electronically excited states and predominantly diabatic behavior of dissociation mediated by a conical intersection between the S1 and S0 states.

20.
J Chem Phys ; 140(3): 034317, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25669389

RESUMO

The first band in the electronic spectrum of pyrrole is calculated from wavepacket propagations performed using the MCTDH method. To do so, two model Hamiltonians are constructed to describe seven low-lying excited electronic states of pyrrole. These Hamiltonians are based on the vibronic coupling model, and are parameterised via fitting to extensive CASPT2 and EOM-CCSD calculations. A detailed analysis of the structure of pyrrole's electronic spectrum in the range 5.5 to 6.5 eV is made. The role of intensity borrowing from transitions to ππ(*) states by lower-lying 3s and 3p Rydberg states is assessed, and reassignments of much of the spectrum are subsequently made which indicate that most of the states in the spectrum are predominantly Rydberg in character. The resulting conclusions drawn serve to highlight the limitations of assignments based on the matching of calculated vertical excitation energies and the positions of peak maxima observed in electronic spectra.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa