RESUMO
The kidney is believed to play a major role in the clearance of apoA-I (apolipoprotein A-I) and HDL (high-density lipoprotein) particles from the bloodstream. Proximal tubule epithelial cells of the kidney appear to prevent the loss of these proteins in the urine by re-absorbing them from the urinary filtrate. Experiments were undertaken to investigate the factors that regulate the renal re-absorption of apoA-I and small HDL in a transformed human proximal tubule epithelial (HKC-8) cell line. Fluorescent microscopic studies show that HKC-8 cells can readily bind and take up HDL particles. Intracellular localization of fluorescently labelled native HDL shows its accumulation in endocytotic vesicles, in a perinuclear region after 1 h. Binding studies reveal a saturable cell association of (125)I-HDL with the HKC-8 cell surface after 2 h. HKC-8 cells do not degrade apoA-I or other HDL-apoproteins. The specific cell association of lipid-free apoA-I is approx. 2-fold less than that observed for native HDL. Similarly, reconstituted HDL prepared from HDL-apoproteins and pure phospholipids also exhibits a low cell association with the HKC-8 cells. In contrast, reconstituted HDL prepared with the extracted lipids of HDL and pure apoA-I exhibits an even higher cell association than that observed with the native lipoprotein. A detailed characterization of the major lipid classes in reconstituted HDL shows that only cholesteryl ester increases the cell association of the recombinant particles. These results show that the cholesteryl ester content of HDL may play an important role in the re-absorptive salvage of HDL by the proximal tubule cells of the kidney.
Assuntos
Túbulos Renais Proximais/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I/metabolismo , Linhagem Celular Transformada , Células Cultivadas , Ésteres do Colesterol/metabolismo , Endocitose , Células Epiteliais/metabolismo , Humanos , Lipídeos/análiseRESUMO
Studies have shown that phosphatidylinositol (PI) can stimulate reverse cholesterol transport by enhancing the flux of cholesterol into HDL and by promoting the transport of high density lipoprotein-cholesterol (HDL-C) to the liver and bile. The goal of this study was to determine the safety and therapeutic value of PI after oral administration to normolipidemic human subjects. We performed a randomized 2 week study in 16 normolipidemic subjects. Subjects received either 2.8 or 5.6 g of PI, with or without food. PI was well tolerated by all subjects. PI significantly affected the levels of HDL-C and triglyceride in the plasma of subjects receiving PI with food. The lower dose showed a 13% increase in HDL-C, whereas the high dose showed an increase of 18% over the 2 week period. Both low- and high-dose groups showed significant increases in plasma apolipoprotein A-I. The high dose of PI also decreased plasma triglycerides by 36% in the fed subjects. These data suggest that after only 2 weeks, PI may have a comparable therapeutic value to niacin, with negligible side effects.
Assuntos
HDL-Colesterol/sangue , Fosfatidilinositóis/farmacologia , Adulto , Apolipoproteína A-I/metabolismo , Bile/metabolismo , Colesterol/metabolismo , Estudos de Coortes , Jejum , Feminino , Humanos , Fígado/metabolismo , Masculino , Niacina/farmacologia , Fatores de Tempo , Triglicerídeos/sangue , Triglicerídeos/metabolismoRESUMO
Administration of phosphatidylinositol (PI) to New Zealand White rabbits increases HDL negative charge and stimulates reverse cholesterol transport. Intravenously administered PI (10 mg/kg) associated almost exclusively with the HDL fraction in rabbits. PI promoted an increase in the hepatic uptake of plasma free cholesterol (FC) and a 21-fold increase in the biliary secretion of plasma-derived cholesterol. PI also increased cholesterol excretion into the feces by 2.5-fold. PI directly affects cellular cholesterol metabolism. In cholesterol-loaded macrophages, PI stimulated cholesterol mass efflux to lipid-poor reconstituted HDL. PI was about half as effective as cAMP at stimulating efflux, and the effects of cAMP and PI were additive. In cultured HepG2 cells, PI-enriched HDL also enhanced FC uptake from HDL by 3-fold and decreased cellular cholesterol synthesis and esterification. PI enrichment had no effect on the selective uptake of cholesterol esters or on the internalization of HDL particles. PI-dependent metabolic events were efficiently blocked by inhibitors of protein kinase C and the inositol signaling cascade. The data suggest that HDL-PI acts via cell surface ATP binding cassette transporters and signaling pathways to regulate both cellular and intravascular cholesterol homeostasis.
Assuntos
Colesterol/metabolismo , Fosfatidilinositóis/fisiologia , Animais , Bile/metabolismo , Transporte Biológico , Linhagem Celular , AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Metabolismo dos Lipídeos , Lipoproteínas HDL/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Fosfatidilinositóis/metabolismo , Proteína Quinase C/antagonistas & inibidores , Coelhos , Transdução de Sinais , Fatores de TempoRESUMO
The effect of apolipoprotein A-II (apoA-II) on the structure and stability of HDL has been investigated in reconstituted HDL particles. Purified human apoA-II was incorporated into sonicated, spherical LpA-I particles containing apoA-I, phospholipids, and various amounts of triacylglycerol (TG), diacylglycerol (DG), and/or free cholesterol. Although the addition of PC to apoA-I reduces the thermodynamic stability (free energy of denaturation) of its alpha-helices, PC has the opposite effect on apoA-II and significantly increases its helical stability. Similarly, substitution of apoA-I with various amounts of apoA-II significantly increases the thermodynamic stability of the particle alpha-helical structure. ApoA-II also increases the size and net negative charge of the lipoprotein particles. ApoA-II directly affects apoA-I conformation and increases the immunoreactivity of epitopes in the N and C termini of apoA-I but decreases the exposure of central domains in the molecule (residues 98-186). ApoA-II appears to increase HL association with HDL and inhibits lipid hydrolysis. ApoA-II mildly inhibits PC hydrolysis in TG-enriched particles but significantly inhibits DG hydrolysis in DG-rich LpA-I. In addition, apoA-II enhances the ability of reconstituted LpA-I particles to inhibit VLDL-TG hydrolysis by HL. Therefore, apoA-II affects both the structure and the dynamic behavior of HDL particles and selectively modifies lipid metabolism.