Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Chem Rev ; 124(9): 5846-5929, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657175

RESUMO

Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.


Assuntos
Corantes Fluorescentes , Oxirredução , Corantes Fluorescentes/química , Humanos , Metais/química , Metais/metabolismo , Animais , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Microscopia de Fluorescência
2.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34114626

RESUMO

The lipid content of mammalian cells varies greatly between cell type. Current methods for analysing lipid components of cells are technically challenging and destructive. Here, we report a facile, inexpensive method to identify lipid content - intracellular flow cytometric lipid analysis (IFCLA). Distinct lipid classes can be distinguished by Nile Blue fluorescence, Nile Red fluorescence or violet autofluorescence. Nile Blue is fluorescent in the presence of unsaturated fatty acids with a carbon chain length greater than 16. Cis-configured fatty acids induce greater Nile Blue fluorescence than their trans-configured counterparts. In contrast, Nile Red exhibits greatest fluorescence in the presence of cholesterol, cholesteryl esters, some triglycerides and phospholipids. Multiparametric spanning-tree progression analysis for density-normalized events (SPADE) analysis of hepatic cellular lipid distribution, including vitamin A autofluorescence, is presented. This flow cytometric system allows for the rapid, inexpensive and non-destructive identification of lipid content, and highlights the differences in lipid biology between cell types by imaging and flow cytometry.


Assuntos
Ésteres do Colesterol , Colesterol , Animais , Citometria de Fluxo , Corantes Fluorescentes , Fosfolipídeos , Triglicerídeos
3.
Chem Soc Rev ; 52(23): 8295-8318, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37910139

RESUMO

Imaging techniques permit the study of the molecular interactions that underlie health and disease. Each imaging technique collects unique chemical information about the cellular environment. Multimodal imaging, using a single probe that can be detected by multiple imaging modalities, can maximise the information extracted from a single cellular sample by combining the results of different imaging techniques. Of particular interest in biological imaging is the combination of the specificity and sensitivity of optical fluorescence microscopy (OFM) with the quantitative and element-specific nature of X-ray fluorescence microscopy (XFM). Together, these techniques give a greater understanding of how native elements or therapeutics affect the cellular environment. This review focuses on recent studies where both techniques were used in conjunction to study cellular systems, demonstrating the breadth of biological models to which this combination of techniques can be applied and the potential for these techniques to unlock untapped knowledge of disease states.


Assuntos
Microscopia , Imagem Óptica , Raios X
4.
Angew Chem Int Ed Engl ; 63(10): e202318615, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38126926

RESUMO

Cell-penetrating peptides (CPPs) play a significant role in the delivery of cargos into human cells. We report the first CPPs based on peptide-bismuth bicycles, which can be readily obtained from commercially available peptide precursors, making them accessible for a wide range of applications. These CPPs enter human cells as demonstrated by live-cell confocal microscopy using fluorescently labelled peptides. We report efficient sequences that demonstrate increased cellular uptake compared to conventional CPPs like the TAT peptide (derived from the transactivating transcriptional activator of human immunodeficiency virus 1) or octaarginine (R8 ), despite requiring only three positive charges. Bicyclization triggered by the presence of bismuth(III) increases cellular uptake by more than one order of magnitude. Through the analysis of cell lysates using inductive coupled plasma mass spectrometry (ICP-MS), we have introduced an alternative approach to examine the cellular uptake of CPPs. This has allowed us to confirm the presence of bismuth in cells after exposure to our CPPs. Mechanistic studies indicated an energy-dependent endocytic cellular uptake sensitive to inhibition by rottlerin, most likely involving macropinocytosis.


Assuntos
Peptídeos Penetradores de Células , Humanos , Peptídeos Penetradores de Células/química , Endocitose/fisiologia , Bismuto , Ciclismo , Pinocitose
5.
J Biol Inorg Chem ; 28(1): 43-55, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36469143

RESUMO

Imbalances in metal homeostasis have been implicated in the progression and drug response of cancer cells. Understanding these changes will enable identification of new treatment regimes and precision medicine approaches to cancer treatment. In particular, there has been considerable interest in the interplay between copper homeostasis and response to platinum-based chemotherapeutic agents. Here, we have studied differences in the Cu uptake and distributions in the ovarian cancer cell line, A2780, and its cisplatin resistant form, A2780.CisR, by measuring total Cu content and the bioavailable Cu pool. Atomic absorption spectroscopy (AAS) revealed a lower total Cu uptake in A2780.CisR compared to A2780 cells. Conversely, live-cell confocal microscopy studies with the ratiometric Cu(I)-sensitive fluorescent dye, InCCu1, revealed higher relative cellular content of labile Cu in A2780.CisR cells compared with A2780 cells. These results demonstrate that Cu trafficking, homeostasis and speciation are different in the Pt-sensitive and resistant cells and may be associated with the predominance of different phenotypes for A2780 (epithelial) and A2780.CisR (mesenchymal) cells.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos/farmacologia , Cobre/farmacologia , Corantes Fluorescentes , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Compostos Organoplatínicos/metabolismo , Cisplatino/farmacologia
6.
Angew Chem Int Ed Engl ; 62(1): e202204745, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36177530

RESUMO

Decoding cellular processes requires visualization of the spatial distribution and dynamic interactions of biomolecules. It is therefore not surprising that innovations in imaging technologies have facilitated advances in biomedical research. The advent of super-resolution imaging technologies has empowered biomedical researchers with the ability to answer long-standing questions about cellular processes at an entirely new level. Fluorescent probes greatly enhance the specificity and resolution of super-resolution imaging experiments. Here, we introduce key super-resolution imaging technologies, with a brief discussion on single-molecule localization microscopy (SMLM). We evaluate the chemistry and photochemical mechanisms of fluorescent probes employed in SMLM. This Review provides guidance on the identification and adoption of fluorescent probes in single molecule localization microscopy to inspire the design of next-generation fluorescent probes amenable to single-molecule imaging.


Assuntos
Corantes Fluorescentes , Imagem Individual de Molécula , Corantes Fluorescentes/química , Imagem Individual de Molécula/métodos , Microscopia de Fluorescência/métodos
7.
Angew Chem Int Ed Engl ; 61(10): e202112832, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935241

RESUMO

Many soluble proteins can self-assemble into macromolecular structures called amyloids, a subset of which are implicated in a range of neurodegenerative disorders. The nanoscale size and structural heterogeneity of prefibrillar and early aggregates, as well as mature amyloid fibrils, pose significant challenges for the quantification of amyloid morphologies. We report a fluorescent amyloid sensor AmyBlink-1 and its application in super-resolution imaging of amyloid structures. AmyBlink-1 exhibits a 5-fold increase in ratio of the green (thioflavin T) to red (Alexa Fluor 647) emission intensities upon interaction with amyloid fibrils. Using AmyBlink-1, we performed nanoscale imaging of four different types of amyloid fibrils, achieving a resolution of ≈30 nm. AmyBlink-1 enables nanoscale visualization and subsequent quantification of morphological features, such as the length and skew of individual amyloid aggregates formed at different times along the amyloid assembly pathway.


Assuntos
Amiloide/análise , Corantes Fluorescentes/química , Amiloide/síntese química , Corantes Fluorescentes/síntese química , Humanos , Estrutura Molecular , Espectrometria de Fluorescência
8.
Analyst ; 146(12): 3818-3822, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34036982

RESUMO

There is a lack of molecular probes for imaging bacteria, in comparison to the array of such tools available for the imaging of mammalian cells. Here, organometallic molecular probes have been developed and assessed for bacterial imaging, designed to have the potential to support multiple imaging modalities. The chemical structure of the probes is designed around a metal-naphthalimide structure. The 4-amino-1,8-naphthalimide moiety, covalently appended through a pyridine ancillary ligand, acts as a luminescent probe for super-resolution microscopy. On the other hand, the metal centre, rhenium(i) or platinum(ii) in the current study, enables techniques such as nanoSIMS. While the rhenium(i) complex was not sufficiently stable to be used as a probe, the platinum(ii) analogue showed good chemical and biological stability. Structured illumination microscopy (SIM) imaging on live Bacillus cereus confirmed the suitability of the probe for super-resolution microscopy. NanoSIMS analysis was used to monitor the uptake of the platinum(ii) complex within the bacteria and demonstrate the potential of this chemical architecture to enable multimodal imaging. The successful combination of these two moieties introduces a platform that could lead to a versatile range of multi-functional probes for bacteria.


Assuntos
Iluminação , Naftalimidas , Animais , Bactérias , Lipídeos , Luminescência , Naftalimidas/toxicidade
9.
Org Biomol Chem ; 19(43): 9339-9357, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34515288

RESUMO

Fluorescent tools have emerged as an important tool for studying the distinct chemical microenvironments of organelles, due to their high specificity and ability to be used in non-destructive, live cellular studies. These tools fall largely in two categories: exogenous fluorescent dyes, or endogenous labels such as genetically encoded fluorescent proteins. In both cases, the probe must be targeted to the organelle of interest. To date, many organelle-targeted fluorescent tools have been reported and used to uncover new information about processes that underpin health and disease. However, the majority of these tools only apply a handful of targeting groups, and less-studied organelles have few robust targeting strategies. While the development of new, robust strategies is difficult, it is essential to develop such strategies to allow for the development of new tools and broadening the effective study of organelles. This review aims to provide a comprehensive overview of the major targeting strategies for both endogenous and exogenous fluorescent cargo, outlining the specific challenges for targeting each organelle type and as well as new developments in the field.


Assuntos
Corantes Fluorescentes
10.
Org Biomol Chem ; 19(5): 1017-1021, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33439192

RESUMO

We describe here a supramolecular sensing system for the array-based classification of biologically relevant mono-, di-, and tri-phosphates in aqueous buffer. The system is based on a colorimetric indicator displacement assay (IDA) with six sensor elements. Each sensor element is comprised of an equimolar cyclic peptide-colorimetric indicator ensemble. Correct classification of the eleven analytes into mono-, di-, tri-, or pyrophosphate was achieved through both principal component analysis (PCA) and linear discriminant analysis (LDA).


Assuntos
Colorimetria/instrumentação , Fosfatos/análise , Análise Discriminante , Desenho de Equipamento , Fosfatos/química , Análise de Componente Principal
11.
Acc Chem Res ; 52(3): 623-632, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30747522

RESUMO

The availability of electrons to biological systems underpins the mitochondrial electron transport chain (ETC) that powers living cells. It is little wonder, therefore, that the sufficiency of electron supply is critical to cellular health. Considering mitochondrial redox activity alone, a lack of oxygen (hypoxia) leads to impaired production of adenosine triphosphate (ATP), the major energy currency of the cell, whereas excess oxygen (hyperoxia) is associated with elevated production of reactive oxygen species (ROS) from the interaction of oxygen with electrons that have leaked from the ETC. Furthermore, the redox proteome, which describes the reversible and irreversible redox modifications of proteins, controls many aspects of biological structure and function. Indeed, many major diseases, including cancer and diabetes, are now termed "redox diseases", spurring much interest in the measurement and monitoring of redox states and redox-active species within biological systems. In this Account, we describe recent efforts to develop magnetic resonance (MR) and fluorescence imaging probes for studying redox biology. These two classes of molecular imaging tools have proved to be invaluable in supplementing the structural information that is traditionally provided by MRI and fluorescence microscopy, respectively, with highly sensitive chemical information. Importantly, the study of biological redox processes requires sensors that operate at biologically relevant reduction potentials, which can be achieved by the use of bioinspired redox-sensitive groups. Since oxidation-reduction reactions are so crucial to modulating cellular function and yet also have the potential to damage cellular structures, biological systems have developed highly sophisticated ways to regulate and sense redox changes. There is therefore a plethora of diverse chemical structures in cells with biologically relevant reduction potentials, from transition metals to organic molecules to proteins. These chemical groups can be harnessed in the development of exogenous molecular imaging agents that are well-tuned to biological redox events. To date, small-molecule redox-sensitive tools for oxidative stress and hypoxia have been inspired from four classes of cellular regulators. The redox-sensitive groups found in redox cofactors, such as flavins and nicotinamides, can be used as reversible switches in both fluorescent and MR probes. Enzyme substrates that undergo redox processing within the cell can be modified to provide fluorescence or MR readout while maintaining their selectivity. Redox-active first-row transition metals are central to biological homeostasis, and their marked electronic and magnetic changes upon oxidation/reduction have been used to develop MR sensors. Finally, redox-sensitive amino acids, particularly cysteine, can be utilized in both fluorescent and MR sensors.


Assuntos
Meios de Contraste/química , Flavinas/química , Corantes Fluorescentes/química , Niacinamida/análogos & derivados , Animais , Células HeLa , Humanos , Imageamento por Ressonância Magnética , Camundongos , Imagem Óptica , Oxirredução , Células RAW 264.7
12.
Chemistry ; 26(44): 10064-10071, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32428299

RESUMO

Fluorescent sensors are a vital research tool, enabling the study of intricate cellular processes in a sensitive manner. The design and synthesis of responsive and targeted probes is necessary to allow such processes to be interrogated in the cellular environment. This remains a challenge, and requires methods for functionalisation of fluorophores with multiple appendages for sensing and targeting groups. Methods to synthesise more structurally complex derivatives of fluorophores will expand their potential scope. Most known 4-amino-1,8-naphthalimides are only functionalised at imide and 4-positions, and structural modifications at additional positions will increase the breadth of their utility as responsive sensors. In this work, methods for the incorporation of a hypoxia sensing group to 4-amino-1,8-naphthalimide were evaluated. An intermediate was developed that allowed us to incorporate a sensing group, targeting group, and ICT donor to the naphthalimide core in a modular fashion. Synthetic strategies for attaching the hypoxia sensing group and how they affected the fluorescence of the naphthalimide were evaluated by photophysical characterisation and time-dependent density functional theory. An extracellular hypoxia probe was then rationally designed that could selectively image the hypoxic and necrotic region of tumour spheroids. Our results demonstrate the versatility of the naphthalimide scaffold and expand its utility. This approach to probe design will enable the flexible, efficient generation of selective, targeted fluorescent sensors for various biological purposes.


Assuntos
1-Naftilamina/análogos & derivados , Corantes Fluorescentes/análise , Corantes Fluorescentes/síntese química , Hipóxia/metabolismo , Naftalimidas/química , Naftalimidas/síntese química , Quinolonas/química , Quinolonas/síntese química , 1-Naftilamina/análise , 1-Naftilamina/síntese química , 1-Naftilamina/química , Linhagem Celular , Corantes Fluorescentes/química , Humanos , Naftalimidas/análise , Quinolonas/análise
13.
Analyst ; 145(4): 1195-1201, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31895359

RESUMO

Toxic heavy metal detection in water sources is crucial due to the detrimental social and environmental threats these metals pose. Traditional methods of metal detection in water rely on expensive and sophisticated technologies, limiting their availability for on-site detection. Here, we report a six-member fluorescent sensor array for 100% successful classification of 9 metal ions in water. The array consists of the commercially available fluorescent dye, Calcein Blue, and 5 analogues that were all synthesised in three steps or less. To further increase simplicity, we report the reduction of the number of sensing elements from 6 to 3 using multivariate statistics to arrive at an array still capable of 100% correct classification. The utility of the three-member fluorescent sensing array was confirmed in environmental pond water samples. The array's flexibility was also demonstrated through its successful classification of micromolar concentrations of Pb2+ for quantitative analysis of heavy metals in water samples.

14.
Angew Chem Int Ed Engl ; 59(46): 20290-20301, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32662086

RESUMO

A key current challenge in biological research is the elucidation of the that roles chemicals and chemical reactions play in cellular function and dysfunction. Of the available cellular imaging techniques, fluorescence imaging offers a balance between sensitivity and resolution, enabling the cost-effective and rapid visualisation of model biological systems. Importantly, the use of responsive fluorescent probes in conjunction with ever-advancing microscopy and flow cytometry techniques enables the visualisation, with high spatiotemporal resolution, of both specific chemical species and chemical reactions in living cells. Ideal responsive fluorescent probes are those that contain a fluorophore tethered to both a sensing unit, to ensure selectivity of response, and a targeting group, to control the sub-cellular localisation of the probe. To date, probes that are both targeted and selective are relatively rare and most localised probes are discovered serendipitously rather than by design. A challenge in this field is therefore the identification of suitable fluorophore scaffolds that can be readily attached to both sensing and targeting groups. Here we review current strategies for dual-functionalisation of fluorophores, highlighting key examples of targeted, responsive probes.

15.
Chem Soc Rev ; 47(1): 195-208, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29119192

RESUMO

Many of the key questions facing cellular biology concern the location and concentration of chemical species, from signalling molecules to metabolites to exogenous toxins. Fluorescent sensors (probes) have revolutionised the understanding of biological systems through their exquisite sensitivity to specific analytes. Probe design has focussed on selective sensors for individual analytes, but many of the most pertinent biological questions are related to the interaction of more than one chemical species. While it is possible to simultaneously use multiple sensors for such applications, data interpretation will be confounded by the fact that sensors will have different uptake, localisation and metabolism profiles. An alternative solution is to instead use a single probe that responds to two analytes, termed a dual-responsive probe. Recent progress in this field has yielded exciting probes, some of which have demonstrated biological application. Here we review work that has been carried out to date, and suggest future research directions that will harness the considerable potential of dual-responsive fluorescent probes.


Assuntos
Biologia Celular , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Pesquisa Biomédica
16.
Angew Chem Int Ed Engl ; 58(10): 3087-3091, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30548909

RESUMO

The detection of externalized phosphatidylserine (PS) on the cell surface is commonly used to distinguish between living, apoptotic, and necrotic cells. The tools of choice for many researchers to study apoptosis are annexin V-fluorophore conjugates. However, the use of this 35 kDa protein is associated with several drawbacks, including temperature sensitivity, Ca2+ dependence, and slow binding kinetics. Herein, a fluorogenic probe for cell surface PS, P-IID, is described, which operates by an intramolecular indicator displacement (IID) mechanism. An intramolecularly bound coumarin indicator is released in the presence of cell surface PS, leading to a fluorescence "turn-on" response. P-IID demonstrates superior performance when compared to annexin V, for both fluorescence imaging and flow cytometry. This allows P-IID to be used in time-lapse imaging of apoptosis using confocal laser scanning microscopy and demonstrates the utility of the IID mechanism in live cells.

17.
Chemistry ; 24(21): 5569-5573, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29423968

RESUMO

Fluorescent sensors that illuminate specific molecules and chemical events allow the selective and sensitive study of the cellular environment. At the centre of this technology lies the fluorescent reporter molecule, and it is therefore crucial to provide a breadth of fluorophores with varying photophysical and biological behaviour. 4-Amino-1,8-naphthalimides are commonly employed in fluorescent sensors, but the narrow range of structural derivatives limits versatility of application. Here we report the synthesis and investigation of a set of twelve 4-amino-1,8-naphthalimides bearing an additional substituent on the aromatic core. Photophysical characterisation and time-dependent density functional theory studies provided insights into the structure-photophysical property relationships of these derivatives, which show an expanded range of emission wavelengths and other photophysical properties. These compounds could all be visualised within cells by confocal microscopy, showing cytoplasmic or lipid droplet localisation. Our studies have demonstrated that simple structural modification of 4-amino-1,8-naphthalimides provides derivatives with considerable breadth of behaviour that lend valuable versatility to the design of fluorescent sensors.

18.
Nat Chem Biol ; 12(8): 586-92, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27272565

RESUMO

Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining body weight and energy stores. Using a mouse model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we found that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B. Biochemical studies of the copper-PDE3B interaction establish copper-dependent inhibition of enzyme activity and identify a key conserved cysteine residue in a PDE3-specific loop that is essential for the observed copper-dependent lipolytic phenotype.


Assuntos
Cobre/farmacologia , AMP Cíclico/metabolismo , Lipólise/efeitos dos fármacos , Inibidores da Fosfodiesterase 3/farmacologia , Células 3T3-L1 , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
19.
Analyst ; 144(1): 230-236, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30480672

RESUMO

Pattern recognition methods such as linear discriminant analysis and principal component analysis are useful tools for the identification of analytes such as metal ions. These typically use a number of distinct molecular probes that exhibit cross-reactivity. Here we report a single molecule that demonstrates varying response in different solvents, therefore enabling the combination of probe and solvent to generate the required array diversity. Seven toxic metal ions were introduced as aqueous samples, and PCA and LDA techniques applied. The array could correctly identify all metals in pure water samples, all metals in doped lake-water samples. Further, we have explored the limit of detection of the system for two metal ions, Cu(ii) and Hg(ii), confirming the promise of the system as a candidate to identify toxic metals in environmental water sources.

20.
Org Biomol Chem ; 16(4): 619-624, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29302671

RESUMO

Sensing hypoxia in tissues and cell models can provide insights into its role in disease states and cell development. Fluorescence imaging is a minimally-invasive method of visualising hypoxia in many biological systems. Here we present a series of improved bioreductive fluorescent sensors based on a nitro-naphthalimide structure, in which selectivity, photophysical properties, toxicity and cellular uptake are tuned through structural modifications. This new range of compounds provides improved probes for imaging and monitoring hypoxia, customised for a range of different applications. Studies in monolayers show the different reducing capabilities of hypoxia-resistant and non-resistant cell lines, and studies in tumour models show successful staining of the hypoxic region.


Assuntos
Corantes Fluorescentes/química , Hipóxia/diagnóstico por imagem , Naftalimidas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Humanos , Células-Tronco Mesenquimais/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Naftalimidas/síntese química , Naftalimidas/toxicidade , Esferoides Celulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa