Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Cell ; 175(4): 1014-1030.e19, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343900

RESUMO

Although current immune-checkpoint therapy (ICT) mainly targets lymphoid cells, it is associated with a broader remodeling of the tumor micro-environment. Here, using complementary forms of high-dimensional profiling, we define differences across all hematopoietic cells from syngeneic mouse tumors during unrestrained tumor growth or effective ICT. Unbiased assessment of gene expression of tumor-infiltrating cells by single-cell RNA sequencing (scRNAseq) and longitudinal assessment of cellular protein expression by mass cytometry (CyTOF) revealed significant remodeling of both the lymphoid and myeloid intratumoral compartments. Surprisingly, we observed multiple subpopulations of monocytes/macrophages, distinguishable by the markers CD206, CX3CR1, CD1d, and iNOS, that change over time during ICT in a manner partially dependent on IFNγ. Our data support the hypothesis that this macrophage polarization/activation results from effects on circulatory monocytes and early macrophages entering tumors, rather than on pre-polarized mature intratumoral macrophages.


Assuntos
Linfócitos/imunologia , Células Mieloides/imunologia , Neoplasias/imunologia , Análise de Célula Única , Transcriptoma , Animais , Linhagem Celular Tumoral , Citometria de Fluxo , Imunoterapia/métodos , Interferon gama/imunologia , Ativação de Macrófagos , Masculino , Espectrometria de Massas , Camundongos , Células Precursoras de Monócitos e Macrófagos/imunologia , Neoplasias/terapia
2.
Nat Immunol ; 21(12): 1552-1562, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046887

RESUMO

T cell memory relies on the generation of antigen-specific progenitors with stem-like properties. However, the identity of these progenitors has remained unclear, precluding a full understanding of the differentiation trajectories that underpin the heterogeneity of antigen-experienced T cells. We used a systematic approach guided by single-cell RNA-sequencing data to map the organizational structure of the human CD8+ memory T cell pool under physiological conditions. We identified two previously unrecognized subsets of clonally, epigenetically, functionally, phenotypically and transcriptionally distinct stem-like CD8+ memory T cells. Progenitors lacking the inhibitory receptors programmed death-1 (PD-1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) were committed to a functional lineage, whereas progenitors expressing PD-1 and TIGIT were committed to a dysfunctional, exhausted-like lineage. Collectively, these data reveal the existence of parallel differentiation programs in the human CD8+ memory T cell pool, with potentially broad implications for the development of immunotherapies and vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica , Células Progenitoras Linfoides/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores , Diferenciação Celular/imunologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/imunologia , Camundongos , Homeostase do Telômero
3.
Immunity ; 56(7): 1664-1680.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392736

RESUMO

Memory CD8+ T cells can be broadly divided into circulating (TCIRCM) and tissue-resident memory T (TRM) populations. Despite well-defined migratory and transcriptional differences, the phenotypic and functional delineation of TCIRCM and TRM cells, particularly across tissues, remains elusive. Here, we utilized an antibody screening platform and machine learning prediction pipeline (InfinityFlow) to profile >200 proteins in TCIRCM and TRM cells in solid organs and barrier locations. High-dimensional analyses revealed unappreciated heterogeneity within TCIRCM and TRM cell lineages across nine different organs after either local or systemic murine infection models. Additionally, we demonstrated the relative effectiveness of strategies allowing for the selective ablation of TCIRCM or TRM populations across organs and identified CD55, KLRG1, CXCR6, and CD38 as stable markers for characterizing memory T cell function during inflammation. Together, these data and analytical framework provide an in-depth resource for memory T cell classification in both steady-state and inflammatory conditions.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Camundongos , Animais , Linhagem da Célula , Memória Imunológica
4.
Nat Immunol ; 20(7): 852-864, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31213723

RESUMO

Dendritic cells (DC) are currently classified as conventional DCs (cDCs) and plasmacytoid DCs (pDCs). Through a combination of single-cell transcriptomic analysis, mass cytometry, in vivo fate mapping and in vitro clonal assays, here we show that, at the single-cell level, the priming of mouse hematopoietic progenitor cells toward the pDC lineage occurs at the common lymphoid progenitor stage, indicative of early divergence of the pDC and cDC lineages. We found the transcriptional signature of a pDC precursor stage, defined here, in the IL-7Rα+ common lymphoid progenitor population and identified Ly6D, IL-7Rα, CD81 and CD2 as key markers of pDC differentiation, which distinguish pDC precursors from cDC precursors. In conclusion, pDCs developed in the bone marrow from a Ly6DhiCD2hi lymphoid progenitor cell and differentiated independently of the myeloid cDC lineage.


Assuntos
Antígenos Ly/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Citometria de Fluxo , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Camundongos , Transcriptoma
5.
Nat Immunol ; 20(4): 514, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30862955

RESUMO

In the version of this article initially published, the first affiliation lacked 'MRC'; the correct name of the institution is 'MRC Weatherall Institute of Molecular Medicine'. Two designations (SP110Y and ST110H) were incorrect in the legend to Fig. 6f,h,i. The correct text is as follows: for panel f, "...loaded with either the CdtB(105-125)SP110Y (DRB4*SP110Y) or the CdtB(105-125)ST110H (DRB4*ST110H) peptide variants..."; for panel h, "...decorated by the DRB4*SP110Y tetramer (lower-right quadrant), the DRB4*ST110H (upper-left quadrant)..."; and for panel i, "...stained ex vivo with DRB4*SP110Y, DRB4*ST110H...". In Fig. 8e, the final six residues (LTEAFF) of the sequence in the far right column of the third row of the table were missing; the correct sequence is 'CASSYRRTPPLTEAFF'. In the legend to Fig. 8d, a designation (HLyE) was incorrect; the correct text is as follows: "(HlyE?)." Portions of the Acknowledgements section were incorrect; the correct text is as follows: "This work was supported by the UK Medical Research Council (MRC) (MR/K021222/1) (G.N., M.A.G., A.S., V.C., A.J.P.),...the Oxford Biomedical Research Centre (A.J.P., V.C.),...and core funding from the Singapore Immunology Network (SIgN) (E.W.N.) and the SIgN immunomonitoring platform (E.W.N.)." Finally, a parenthetical element was phrased incorrectly in the final paragraph of the Methods subsection "T cell cloning and live fluorescence barcoding"; the correct phrasing is as follows: "...(which in all cases included HlyE, CdtB, Ty21a, Quailes, NVGH308, and LT2 strains and in volunteers T5 and T6 included PhoN)...". Also, in Figs. 3c and 4a, the right outlines of the plots were not visible; in the legend to Fig. 3, panel letter 'f' was not bold; and in Fig. 8f, 'ND' should be aligned directly beneath DRB4 in the key and 'ND' should be removed from the diagram at right, and the legend should be revised accordingly as follows: "...colors indicate the HLA class II restriction (gray indicates clones for which restriction was not determined (ND)). Clonotypes are grouped on the basis of pathogen selectivity (continuous line), protein specificity (dashed line) and epitope specificity; for ten HlyE-specific clones (pixilated squares), the epitope specificity was not determined...". The errors have been corrected in the HTML and PDF versions of the article.

6.
Nat Immunol ; 19(7): 742-754, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29925993

RESUMO

To tackle the complexity of cross-reactive and pathogen-specific T cell responses against related Salmonella serovars, we used mass cytometry, unbiased single-cell cloning, live fluorescence barcoding, and T cell-receptor sequencing to reconstruct the Salmonella-specific repertoire of circulating effector CD4+ T cells, isolated from volunteers challenged with Salmonella enterica serovar Typhi (S. Typhi) or Salmonella Paratyphi A (S. Paratyphi). We describe the expansion of cross-reactive responses against distantly related Salmonella serovars and of clonotypes recognizing immunodominant antigens uniquely expressed by S. Typhi or S. Paratyphi A. In addition, single-amino acid variations in two immunodominant proteins, CdtB and PhoN, lead to the accumulation of T cells that do not cross-react against the different serovars, thus demonstrating how minor sequence variations in a complex microorganism shape the pathogen-specific T cell repertoire. Our results identify immune-dominant, serovar-specific, and cross-reactive T cell antigens, which should aid in the design of T cell-vaccination strategies against Salmonella.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Salmonella paratyphi A/imunologia , Salmonella typhi/imunologia , ADP-Ribosil Ciclase 1/análise , Adulto , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Linfócitos T CD4-Positivos/química , Células Clonais , Humanos , Fenótipo , Receptores CCR7/análise , Febre Tifoide/imunologia
7.
Immunity ; 54(8): 1825-1840.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270940

RESUMO

Hepatocellular carcinoma (HCC) often develops following chronic hepatitis B virus (HBV) infection and responds poorly to immune checkpoint blockade. Here, we examined the antigen specificities of HCC-infiltrating T cells and their relevance to tumor control. Using highly multiplexed peptide-MHC tetramer staining of unexpanded cells from blood, liver, and tumor tissues from 46 HCC patients, we detected 91 different antigen-specific CD8+ T cell populations targeting HBV, neoantigen, tumor-associated, and disease-unrelated antigens. Parallel high-dimensional analysis delineated five distinct antigen-specific tissue-resident memory T (Trm) cell populations. Intratumoral and intrahepatic HBV-specific T cells were enriched for two Trm cell subsets that were PD-1loTOXlo, despite being clonally expanded. High frequencies of intratumoral terminally exhausted T cells were uncommon. Patients with tumor-infiltrating HBV-specific CD8+ Trm cells exhibited longer-term relapse-free survival. Thus, non-terminally exhausted HBV-specific CD8+ Trm cells show hallmarks of active involvement and effective antitumor response, implying that these cells could be harnessed for therapeutic purposes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/imunologia , Memória Imunológica/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Antígenos de Neoplasias/imunologia , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/prevenção & controle , Receptor de Morte Celular Programada 1/metabolismo , Células Tumorais Cultivadas
8.
Immunity ; 54(9): 2101-2116.e6, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34469775

RESUMO

Tissue macrophages are immune cells whose phenotypes and functions are dictated by origin and niches. However, tissues are complex environments, and macrophage heterogeneity within the same organ has been overlooked so far. Here, we used high-dimensional approaches to characterize macrophage populations in the murine liver. We identified two distinct populations among embryonically derived Kupffer cells (KCs) sharing a core signature while differentially expressing numerous genes and proteins: a major CD206loESAM- population (KC1) and a minor CD206hiESAM+ population (KC2). KC2 expressed genes involved in metabolic processes, including fatty acid metabolism both in steady-state and in diet-induced obesity and hepatic steatosis. Functional characterization by depletion of KC2 or targeted silencing of the fatty acid transporter Cd36 highlighted a crucial contribution of KC2 in the liver oxidative stress associated with obesity. In summary, our study reveals that KCs are more heterogeneous than anticipated, notably describing a subpopulation wired with metabolic functions.


Assuntos
Antígenos CD36/metabolismo , Células de Kupffer/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/fisiologia , Animais , Camundongos
9.
Immunity ; 53(2): 303-318.e5, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32579887

RESUMO

Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.


Assuntos
Células Precursoras de Granulócitos/citologia , Monócitos/citologia , Mielopoese/fisiologia , Neutrófilos/citologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa