RESUMO
Strains of Salmonella utilize two distinct type three secretion systems to deliver effector proteins directly into host cells. The Salmonella effectors SseK1 and SseK3 are arginine glycosyltransferases that modify mammalian death domain containing proteins with N-acetyl glucosamine (GlcNAc) when overexpressed ectopically or as recombinant protein fusions. Here, we combined Arg-GlcNAc glycopeptide immunoprecipitation and mass spectrometry to identify host proteins GlcNAcylated by endogenous levels of SseK1 and SseK3 during Salmonella infection. We observed that SseK1 modified the mammalian signaling protein TRADD, but not FADD as previously reported. Overexpression of SseK1 greatly broadened substrate specificity, whereas ectopic co-expression of SseK1 and TRADD increased the range of modified arginine residues within the death domain of TRADD. In contrast, endogenous levels of SseK3 resulted in modification of the death domains of receptors of the mammalian TNF superfamily, TNFR1 and TRAILR, at residues Arg376 and Arg293 respectively. Structural studies on SseK3 showed that the enzyme displays a classic GT-A glycosyltransferase fold and binds UDP-GlcNAc in a narrow and deep cleft with the GlcNAc facing the surface. Together our data suggest that salmonellae carrying sseK1 and sseK3 employ the glycosyltransferase effectors to antagonise different components of death receptor signaling.
Assuntos
Proteínas de Bactérias/metabolismo , Salmonella/metabolismo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Acetilglucosamina/metabolismo , Animais , Proteínas de Bactérias/química , Sequência Conservada , Ácido Glutâmico/metabolismo , Glicosilação , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Mutação/genética , Domínios Proteicos , Células RAW 264.7 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Especificidade por Substrato , Proteína de Domínio de Morte Associada a Receptor de TNF/química , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismoRESUMO
Coxiella burnetii is a Gram-negative bacterium which causes Q fever, a complex and life-threatening infection with both acute and chronic presentations. C. burnetii invades a variety of host cell types and replicates within a unique vacuole derived from the host cell lysosome. In order to understand how C. burnetii survives within this intracellular niche, we have investigated the carbon metabolism of both intracellular and axenically cultivated bacteria. Both bacterial populations were shown to assimilate exogenous [13C]glucose or [13C]glutamate, with concomitant labeling of intermediates in glycolysis and gluconeogenesis, and in the TCA cycle. Significantly, the two populations displayed metabolic pathway profiles reflective of the nutrient availabilities within their propagated environments. Disruption of the C. burnetii glucose transporter, CBU0265, by transposon mutagenesis led to a significant decrease in [13C]glucose utilization but did not abolish glucose usage, suggesting that C. burnetii express additional hexose transporters which may be able to compensate for the loss of CBU0265. This was supported by intracellular infection of human cells and in vivo studies in the insect model showing loss of CBU0265 had no impact on intracellular replication or virulence. Using this mutagenesis and [13C]glucose labeling approach, we identified a second glucose transporter, CBU0347, the disruption of which also showed significant decreases in 13C-label incorporation but did not impact intracellular replication or virulence. Together, these analyses indicate that C. burnetii may use multiple carbon sources in vivo and exhibits greater metabolic flexibility than expected.
Assuntos
Coxiella burnetii/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Interações Hospedeiro-Patógeno , Febre Q/microbiologia , Virulência/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Transporte Biológico , Coxiella burnetii/patogenicidade , Gluconeogênese/fisiologia , Glicólise/fisiologia , Células HeLa , Humanos , Lepidópteros/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Células THP-1RESUMO
A previously unappreciated link between persisters and the emergence and spread of antibiotic resistance has been recently established. The bulk of this research has been conducted in vitro, but some studies are beginning to elucidate the importance of persister reservoirs in both antibiotic treatment failure and the spread of antibiotic resistance using in vivo models. In order to further this research, careful analyses of the mechanisms of persister reservoir formation as well as the dynamics of persister survival and postantibiotic regrowth are of importance. Here, we present a mouse model to quantitatively study Salmonella persisters in vivo. By using neutral unique sequence barcodes, we describe the quantitative analysis of rare events (aka bottlenecks) associated with persister reservoir formation, survival, and reseeding of the gut lumen. This provides quantitative data for persister-fueled plasmid transfer in vivo. Although this chapter describes analysis of Salmonella persisters in a mouse model, these concepts can be applied to any experimental system provided that tractable experimental systems are present.
Assuntos
Infecções por Salmonella , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Camundongos , Plasmídeos/genética , Densidade Demográfica , Salmonella/genéticaRESUMO
During infection, Salmonella species inject multiple type III secretion system (T3SS) effector proteins into host cells that mediate invasion and subsequent intracellular replication. At early stages of infection, Salmonella exploits key regulators of host intracellular vesicle transport, including the small GTPases Rab5 and Rab7, to subvert host endocytic vesicle trafficking and establish the Salmonella-containing vacuole (SCV). At later stages of intracellular replication, interactions of the SCV with Rab GTPases are less well defined. Here we report that Rab1, Rab5, and Rab11 are modified at later stages of Salmonella infection by SseK3, an arginine N-acetylglucosamine (GlcNAc) transferase effector translocated via the Salmonella pathogenicity island 2 (SPI-2) type III secretion system. SseK3 modified arginines at positions 74, 82, and 111 within Rab1 and this modification occurred independently of Rab1 nucleotide binding. SseK3 exhibited Golgi localization that was independent of its glycosyltransferase activity but Arg-GlcNAc transferase activity was required for inhibition of alkaline phosphatase secretion in transfected cells. While SseK3 had a modest effect on SEAP secretion during infection of HeLa229 cells, inhibition of IL-1 and GM-CSF cytokine secretion was only observed upon over-expression of SseK3 during infection of RAW264.7 cells. Our results suggest that, in addition to targeting death receptor signaling, SseK3 may contribute to Salmonella infection by interfering with the activity of key Rab GTPases.