RESUMO
While horizontal gene transfer (HGT) is well documented in bacteria, the role and frequency of HGT across eukaryotes remains poorly understood. Kominek et al. identified a horizontal operon transfer (HOT) event, with clear evidence for selection to facilitate gene expression, that has allowed a group of yeasts to scavenge iron using bacterially derived genes.
Assuntos
Eucariotos , Bactérias/genética , Células Eucarióticas , Transferência Genética Horizontal , ÓperonRESUMO
The most common intracellular bacterial infection is Wolbachia pipientis, a microbe that manipulates host reproduction and is used in control of insect vectors. Phenotypes induced by Wolbachia have been studied for decades and range from sperm-egg incompatibility to male killing. How Wolbachia alters host biology is less well understood. Previously, we characterized the first Wolbachia effector-WalE1, which encodes an alpha-synuclein domain at the N terminus. Purified WalE1 sediments with and bundles actin and when heterologously expressed in flies, increases Wolbachia titer in the developing oocyte. In this work, we first identify the native expression of WalE1 by Wolbachia infecting both fly cells and whole animals. WalE1 appears as aggregates in the host cell cytosol. We next show that WalE1 co-immunoprecipitates with the host protein Past1, although might not directly interact with it, and that WalE1 manipulates host endocytosis. Yeast expressing WalE1 show deficiency in uptake of FM4-64 dye, and flies harboring mutations in Past1 or overexpressing WalE1 are sensitive to AgNO3, a hallmark of endocytosis defects. We also show that flies expressing WalE1 suffer from endocytosis defects in larval nephrocytes. Finally, we also show that Past1 null flies harbor more Wolbachia overall and in late egg chambers. Our results identify interactions between Wolbachia and a host protein involved in endocytosis and point to yet another important host cell process impinged upon by Wolbachia's WalE1 effector.
Assuntos
Drosophila , Wolbachia , Masculino , Animais , Drosophila/microbiologia , Wolbachia/metabolismo , Sementes , Reprodução , Endocitose , Drosophila melanogaster , Simbiose/genéticaRESUMO
Intracellular bacteria use secreted effector proteins to modify host biology and facilitate infection. For many of these microbes, a particular eukaryotic domain-the ankyrin repeat (ANK)-plays a central role in specifying the host proteins and pathways targeted by the microbe. While we understand much of how some ANKs function in model organisms like Legionella and Coxiella, the understudied Rickettsiales species harbor many proteins with ANKs, some of which play critical roles during infection. This minireview is meant to organize and summarize the research progress made in understanding some of these Rickettsiales ANKs as well as document some of the techniques that have driven much of this progress.
Assuntos
Proteínas de Bactérias , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Animais , Repetição de Anquirina , Rickettsiaceae/genética , Rickettsiaceae/metabolismoRESUMO
Arthropod endosymbiont Wolbachia pipientis is part of a global biocontrol strategy to reduce the replication of mosquito-borne RNA viruses such as alphaviruses. We previously demonstrated the importance of a host cytosine methyltransferase, DNMT2, in Drosophila and viral RNA as a cellular target during pathogen-blocking. Here we report a role for DNMT2 in Wolbachia-induced alphavirus inhibition in Aedes species. Expression of DNMT2 in mosquito tissues, including the salivary glands, is elevated upon virus infection. Notably, this is suppressed in Wolbachia-colonized animals, coincident with reduced virus replication and decreased infectivity of progeny virus. Ectopic expression of DNMT2 in cultured Aedes cells is proviral, increasing progeny virus infectivity, and this effect of DNMT2 on virus replication and infectivity is dependent on its methyltransferase activity. Finally, examining the effects of Wolbachia on modifications of viral RNA by LC-MS show a decrease in the amount of 5-methylcytosine modification consistent with the down-regulation of DNMT2 in Wolbachia colonized mosquito cells and animals. Collectively, our findings support the conclusion that disruption of 5-methylcytosine modification of viral RNA is a vital mechanism operative in pathogen blocking. These data also emphasize the essential role of epitranscriptomic modifications in regulating fundamental alphavirus replication and transmission processes.
Assuntos
Aedes , Alphavirus , Artrópodes , Flavivirus , Wolbachia , 5-Metilcitosina/metabolismo , Alphavirus/genética , Animais , Artrópodes/genética , Flavivirus/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral , Wolbachia/fisiologiaRESUMO
Wolbachia pipientis is an incredibly widespread bacterial symbiont of insects, present in an estimated 25 to 52% of species worldwide. Wolbachia is faithfully maternally transmitted both in a laboratory setting and in the wild. In an established infection, Wolbachia is primarily intracellular, residing within host-derived vacuoles that are associated with the endoplasmic reticulum. However, Wolbachia also frequently transfers between host species, requiring an extracellular stage to its life cycle. Indeed, Wolbachia has been moved between insect species for the precise goal of controlling populations. The use of Wolbachia in this application requires that we better understand how it initiates and establishes new infections. Here, we designed a novel method for live tracking Wolbachia cells during infection using a combination of stains and microscopy. We show that live Wolbachia cells are taken up by host cells at a much faster rate than dead Wolbachia cells, indicating that Wolbachia bacteria play a role in their own uptake and that Wolbachia colonization is not just a passive process. We also show that the host actin cytoskeleton must be intact for this to occur and that drugs that disrupt the actin cytoskeleton effectively abrogate Wolbachia uptake. The development of this live infection assay will assist in future efforts to characterize Wolbachia factors used during host infection.
Assuntos
Wolbachia , Animais , Vacúolos , Actinas , Simbiose , Drosophila melanogaster/microbiologiaRESUMO
As part of society-wide efforts to promote open access in science, the American Society for Microbiology journals are piloting the publication of companion articles highlighting rigorous data resources. The simultaneous publication of original research and data resource articles will increase awareness of, and access to, verified data sets that are critical to scientific progress. Companion articles in Microbiology Resource Announcements and two research journals, mSystems and Applied and Environmental Microbiology, will serve as an initial experiment to promote open and reproducible science.
RESUMO
The ability of the endosymbiont Wolbachia pipientis to restrict RNA viruses is presently being leveraged to curb global transmission of arbovirus-induced diseases. Past studies have shown that virus replication is limited early in arthropod cells colonized by the bacterium, although it is unclear if this phenomenon is replicated in mosquito cells that first encounter viruses obtained through a vertebrate blood meal. Furthermore, these cellular events neither explain how Wolbachia limits dissemination of viruses between mosquito tissues, nor how it prevents transmission of infectious viruses from mosquitoes to vertebrate host. In this study, we try to address these issues using an array of mosquito cell culture models, with an additional goal being to identify a common viral target for pathogen blocking. Our results establish the viral RNA as a cellular target for Wolbachia-mediated inhibition, with the incoming viral RNA experiencing rapid turnover following internalization in cells. This early block in replication in mosquito cells initially infected by the virus thus consequently reduces the production of progeny viruses from these same cells. However, this is not the only contributor to pathogen blocking. We show that the presence of Wolbachia reduces the per-particle infectivity of progeny viruses on naïve mosquito and vertebrate cells, consequently limiting virus dissemination and transmission, respectively. Importantly, we demonstrate that this aspect of pathogen blocking is independent of any particular Wolbachia-host association and affects viruses belonging to Togaviridae and Flaviviridae families of RNA viruses. Finally, consistent with the idea of the viral RNA as a target, we find that the encapsidated virion RNA is less infectious for viruses produced from Wolbachia-colonized cells. Collectively, our findings present a common mechanism of pathogen blocking in mosquitoes that establish a link between virus inhibition in the cell to virus dissemination and transmission.
Assuntos
Flavivirus/metabolismo , RNA Viral/metabolismo , Togaviridae/metabolismo , Wolbachia/metabolismo , Aedes , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Drosophila melanogaster , Flavivirus/genética , RNA Viral/genética , Togaviridae/genética , Células Vero , Wolbachia/genéticaRESUMO
Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture's most important pollinator. One factor that may influence colony health is the microbial community. Although honey bee worker guts have a characteristic community of bee-specific microbes, the honey bee queen digestive tracts are colonized predominantly by a single acetic acid bacterium tentatively named 'Parasaccharibacter apium'. This bacterium is related to flower-associated microbes such as Saccharibacter floricola, and initial phylogenetic analyses placed it as sister to these environmental bacteria. We used a combination of phylogenetic and sequence identity methods to better resolve evolutionary relationships among 'P. apium', strains in the genus Saccharibacter, and strains in the closely related genus Bombella. Interestingly, measures of genome-wide average nucleotide identity and aligned fraction, coupled with phylogenetic placement, indicate that many strains labelled as 'P. apium' and Saccharibacter species are all the same species as Bombella apis. We propose reclassifying these strains as Bombella apis and outline the data supporting that classification below.
Assuntos
Acetobacteraceae , Ácidos Graxos , Acetobacteraceae/genética , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Abelhas , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
The most common intracellular symbiont on the planet-Wolbachia pipientis-is infamous largely for the reproductive manipulations induced in its host. However, more recent evidence suggests that this bacterium may also serve as a nutritional mutualist in certain host backgrounds and for certain metabolites. We performed a large-scale analysis of conserved gene content across all sequenced Wolbachia genomes to infer potential nutrients made by these symbionts. We review and critically evaluate the prior research supporting a beneficial role for Wolbachia and suggest future experiments to test hypotheses of metabolic provisioning.
Assuntos
Simbiose/fisiologia , Wolbachia/fisiologia , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Genoma Bacteriano , Heme/metabolismo , Fenômenos Fisiológicos da Nutrição , Wolbachia/genéticaRESUMO
Host-associated microbes facilitate diverse biotic and abiotic interactions between hosts and their environments. Experimental alterations of host-associated microbial communities frequently decrease host fitness, yet much less is known about if and how host-microbiome interactions are altered by natural perturbations, such as introduction events. Here, we begin to assess this question in Onthophagus dung beetles, a species-rich and geographically widely distributed genus whose members rely on vertically transmitted microbiota to support normal development. Specifically, we investigated to what extent microbiome community membership shifts during host introduction events and the relative significance of ancestral associations and novel environmental conditions in the structuring of microbial communities of introduced host species. Our results demonstrate that both evolutionary history and local environmental forces structure the microbial communities of these animals, but that their relative importance is shaped by the specific circumstances that characterize individual introduction events. Furthermore, we identify microbial taxa such as Dysgonomonas that may constitute members of the core Onthophagus microbiome regardless of host population or species, but also Wolbachia which associates with Onthophagus beetles in a species or even population-specific manner. We discuss the implications of our results for our understanding of the evolutionary ecology of symbiosis in dung beetles and beyond.
Assuntos
Bactérias/isolamento & purificação , Besouros/microbiologia , Microbiota , Simbiose , Animais , Território da Capital Australiana , Espécies Introduzidas , Itália , West VirginiaRESUMO
Wolbachia pipientis is an intracellular endosymbiont known to confer host resistance against RNA viruses in insects. However, the causal mechanism underlying this antiviral defense remains poorly understood. To this end, we have established a robust arthropod model system to study the tripartite interaction involving Sindbis virus and Wolbachia strain wMel within its native host, Drosophila melanogaster. By leveraging the power of Drosophila genetics and a parallel, highly tractable D. melanogaster derived JW18 cell culture system, we determined that in addition to reducing infectious virus production, Wolbachia negatively influences Sindbis virus particle infectivity. This is further accompanied by reductions in viral transcript and protein levels. Interestingly, unchanged ratio of proteins to viral RNA copies suggest that Wolbachia likely does not influence the translational efficiency of viral transcripts. Additionally, expression analyses of candidate host genes revealed D. melanogaster methyltransferase gene Mt2 as an induced host factor in the presence of Wolbachia. Further characterization of viral resistance in Wolbachia-infected flies lacking functional Mt2 revealed partial recovery of virus titer relative to wild-type, accompanied by complete restoration of viral RNA and protein levels, suggesting that Mt2 acts at the stage of viral genome replication. Finally, knockdown of Mt2 in Wolbachia uninfected JW18 cells resulted in increased virus infectivity, thus demonstrating its previously unknown role as an antiviral factor against Sindbis virus. In conclusion, our findings provide evidence supporting the role of Wolbachia-modulated host factors towards RNA virus resistance in arthropods, alongside establishing Mt2's novel antiviral function against Sindbis virus in D. melanogaster.
Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/virologia , Sindbis virus/fisiologia , Wolbachia/fisiologia , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Interações Hospedeiro-Patógeno , Simbiose , Replicação ViralRESUMO
Wolbachia pipientis is an alpha-proteobacterial, obligate intracellular microbe and arguably the most successful infection on our planet, colonizing 40-60% of insect species. Wolbachia are also present in most, but not all, filarial nematodes where they are obligate mutualists and are the targets for anti-filarial drug discovery. Although Wolbachia are related to important human pathogens they do not infect mammals, but instead are well known for their reproductive manipulations of insect populations, inducing the following phenotypes: male-killing, feminization, parthenogenesis induction, or cytoplasmic incompatibility (CI). The most common of these, CI, results in a sperm-egg incompatibility and increases the relative fecundity of infected females in a population. In the last decade, Wolbachia have also been shown to provide a benefit to insects, where the infection can inhibit RNA virus replication within the host. Wolbachia cannot be cultivated outside of host cells and no genetic tools are available in the symbiont, limiting approaches available to its study. This means that many questions fundamental to our understanding of Wolbachia basic biology remained unknown for decades. The tenth biennial international Wolbachia conference, "Wolbachia Evolution, Ecology, Genomics and Cell Biology: A Chronicle of the Most Ubiquitous Symbiont", was held on June 17-22, 2018, Salem, MA USA. In the review below we highlight the new science presented at the meeting, link it to prior efforts to answer these questions across the Wolbachia genus, and the importance to the field of symbiosis. The topics covered in this review are based on the presentations at the conference.
RESUMO
Mothers provide their offspring with symbionts. Maternally transmitted, intracellular symbionts must disperse from mother to offspring with other cytoplasmic elements, like mitochondria. Here, we investigated how the intracellular symbiont Wolbachia interacts with mitochondria during maternal transmission. Mitochondria and Wolbachia may interact antagonistically and compete as each population tries to ensure its own evolutionary success. Alternatively, mitochondria and Wolbachia may cooperate as both benefit from ensuring the fitness of the mother. We characterized the relationship between mitochondria and Wolbachia titers in ovaries of Drosophila melanogaster. We found that mitochondria and Wolbachia titers are positively correlated in common laboratory genotypes of D. melanogaster. We attempted to perturb this covariation through the introduction of Wolbachia variants that colonize at different titers. We also attempted to perturb the covariation through manipulating the female reproductive tract to disrupt maternal transmission. Finally, we also attempted to disrupt the covariation by knocking down gene expression for two loci involved in mitochondrial metabolism: NADH dehydrogenase and a mitochondrial transporter. Overall, we find that mitochondria and Wolbachia titers are commonly positively correlated, but this positive covariation is disrupted at high titers of Wolbachia. Our results suggest that mitochondria and Wolbachia have likely evolved mechanisms to stably coexist, but the competitive dynamics change at high Wolbachia titers. We provide future directions to better understand how their interaction influences the maintenance of the symbiosis.
Assuntos
Mitocôndrias/genética , Wolbachia/genética , Animais , Evolução Biológica , Drosophila melanogaster/genética , Feminino , Expressão Gênica/genética , Genótipo , Transmissão Vertical de Doenças Infecciosas , NADH Desidrogenase/genética , Simbiose/genéticaRESUMO
Symbiotic associations of metazoans with bacteria strongly influence animal biology since bacteria are ubiquitous and virtually no animal is completely free from them. Tardigrades are micrometazoans famous for their ability to undergo ametabolic states (cryptobiosis) but very little information is available on potential microbial associations. We characterized the microbiomes of six limnoterrestrial tardigrade species belonging to several phylogenetic lines in tandem with the microbiomes of their respective substrates. The experimental design enabled us to determine the effects of both the environment and the host genetic background on the tardigrade microbiome; we were able to define the microbial community of the same species sampled from different environments, and the communities of different species from the same environment. Our 16S rRNA gene amplicon approach indicated that the tardigrade microbiome is species-specific and well differentiated from the environment. Tardigrade species showed a much lower microbial diversity compared to their substrates, with only one significant exception. Forty-nine common OTUs (operational taxonomic units) were classified into six bacterial phyla, while four common OTUs were unclassified and probably represent novel bacterial taxa. Specifically, the tardigrade microbiome appears dominated by Proteobacteria and Bacteroidetes. Some OTUs were shared between different species from geographically distant samples, suggesting the associated bacteria may be widespread. Putative endosymbionts of tardigrades from the order Rickettsiales were identified. Our results indicated that like all other animals, tardigrades have their own microbiota that is different among species, and its assembly is determined by host genotype and environmental influences.
Assuntos
Bactérias/classificação , Microbiota/fisiologia , Filogenia , Simbiose , Tardígrados/microbiologia , Animais , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Bacteroidetes/classificação , Bacteroidetes/genética , Biodiversidade , DNA Bacteriano/genética , Interações entre Hospedeiro e Microrganismos , Microbiota/genética , Proteobactérias/classificação , Proteobactérias/genética , RNA Ribossômico 16S/genética , Rickettsiales/classificação , Rickettsiales/genética , Especificidade da EspécieRESUMO
Wolbachia pipientis, the most common intracellular infection on the planet, infects 40% of insects as well as nematodes, isopods and arachnids. Wolbachia are obligately intracellular and challenging to study; there are no genetic tools for manipulating Wolbachia nor can they be cultured outside of host cells. Despite these roadblocks, the research community has defined a set of Wolbachia loci involved in host interaction: Wolbachia effectors. Through the use of Drosophila genetics, surrogate systems and biochemistry, the field has begun to define the toolkit Wolbachia use for host manipulation. Below we review recent findings identifying these Wolbachia effectors and point to potential, as yet uncharacterized, links between known phenotypes induced by Wolbachia infection and predicted effectors.
RESUMO
Wolbachia pipientis is a ubiquitous, maternally transmitted bacterium that infects the germline of insect hosts. Estimates are that Wolbachia infect nearly 40% of insect species on the planet, making it the most prevalent infection on Earth. The bacterium, infamous for the reproductive phenotypes it induces in arthropod hosts, has risen to recent prominence due to its use in vector control. Wolbachia infection prevents the colonization of vectors by RNA viruses, including Drosophila C virus and important human pathogens such as Dengue and Chikungunya. Here we present data indicating that Wolbachia utilize the host actin cytoskeleton during oogenesis for persistence within and transmission between Drosophila melanogaster generations. We show that phenotypically wild type flies heterozygous for cytoskeletal mutations in Drosophila profilin (chic(221/+) and chic(1320/+)) or villin (qua(6-396/+)) either clear a Wolbachia infection, or result in significantly reduced infection levels. This reduction of Wolbachia is supported by PCR evidence, Western blot results and cytological examination. This phenotype is unlikely to be the result of maternal loading defects, defects in oocyte polarization, or germline stem cell proliferation, as the flies are phenotypically wild type in egg size, shape, and number. Importantly, however, heterozygous mutant flies exhibit decreased total G-actin in the ovary, compared to control flies and chic(221) heterozygous mutants exhibit decreased expression of profilin. Additionally, RNAi knockdown of profilin during development decreases Wolbachia titers. We analyze evidence in support of alternative theories to explain this Wolbachia phenotype and conclude that our results support the hypothesis that Wolbachia utilize the actin skeleton for efficient transmission and maintenance within Drosophila.
Assuntos
Drosophila melanogaster/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Wolbachia/patogenicidade , Actinas/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Transmissão Vertical de Doenças Infecciosas , Fenótipo , Reação em Cadeia da PolimeraseAssuntos
Negro ou Afro-Americano , Microbiologia/normas , Publicações Periódicas como Assunto/normas , Racismo/prevenção & controle , Disparidades em Assistência à Saúde/estatística & dados numéricos , Disparidades em Assistência à Saúde/tendências , Humanos , Publicações Periódicas como Assunto/tendências , Racismo/estatística & dados numéricos , Racismo/tendênciasRESUMO
UNLABELLED: Bacterial type IV secretion systems (T4SSs) are composed of two major subfamilies, conjugation machines dedicated to DNA transfer and effector translocators for protein transfer. We show here that the Escherichia coli pKM101-encoded conjugation system, coupled with chimeric substrate receptors, can be repurposed for transfer of heterologous effector proteins. The chimeric receptors were composed of the N-terminal transmembrane domain of pKM101-encoded TraJ fused to soluble domains of VirD4 homologs functioning in Agrobacterium tumefaciens, Anaplasma phagocytophilum, or Wolbachia pipientis A chimeric receptor assembled from A. tumefaciens VirD4 (VirD4At) mediated transfer of a MOBQ plasmid (pML122) and A. tumefaciens effector proteins (VirE2, VirE3, and VirF) through the pKM101 transfer channel. Equivalent chimeric receptors assembled from the rickettsial VirD4 homologs similarly supported the transfer of known or candidate effectors from rickettsial species. These findings establish a proof of principle for use of the dedicated pKM101 conjugation channel, coupled with chimeric substrate receptors, to screen for translocation competency of protein effectors from recalcitrant species. Many T4SS receptors carry sequence-variable C-terminal domains (CTDs) with unknown function. While VirD4At and the TraJ/VirD4At chimera with their CTDs deleted supported pML122 transfer at wild-type levels, ΔCTD variants supported transfer of protein substrates at strongly diminished or elevated levels. We were unable to detect binding of VirD4At's CTD to the VirE2 effector, although other VirD4At domains bound this substrate in vitro We propose that CTDs evolved to govern the dynamics of substrate presentation to the T4SS either through transient substrate contacts or by controlling substrate access to other receptor domains. IMPORTANCE: Bacterial type IV secretion systems (T4SSs) display striking versatility in their capacity to translocate DNA and protein substrates to prokaryotic and eukaryotic target cells. A hexameric ATPase, the type IV coupling protein (T4CP), functions as a substrate receptor for nearly all T4SSs. Here, we report that chimeric T4CPs mediate transfer of effector proteins through the Escherichia coli pKM101-encoded conjugation system. Studies with these repurposed conjugation systems established a role for acidic C-terminal domains of T4CPs in regulating substrate translocation. Our findings advance a mechanistic understanding of T4CP receptor activity and, further, support a model in which T4SS channels function as passive conduits for any DNA or protein substrates that successfully engage with and pass through the T4CP specificity checkpoint.
Assuntos
Conjugação Genética/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas Recombinantes de Fusão , Sistemas de Secreção Tipo IV/fisiologia , DNA Bacteriano , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Domínios ProteicosRESUMO
To complete their development, diverse animal species rely on the presence of communities of symbiotic microbiota that are vertically transmitted from mother to offspring. In the dung beetle genus Onthophagus, newly hatched larvae acquire maternal gut symbionts by the consumption of a maternal fecal secretion known as the pedestal. Here, we investigate the role of pedestal symbionts in mediating the normal development of Onthophagus gazella. Through the stepwise removal of environmental and maternal sources of microbial inoculation, we find that pedestal microbiota can enhance both overall growth and developmental rate in O. gazella. Further, we find that the beneficial effects of symbionts on developmental outcomes are amplified in the presence of ecologically relevant temperature and desiccation stressors. Collectively, our results suggest that the pedestal may provide an adaptive function by transmitting beneficial microbiota to developing dung beetle larvae and that the importance of microbiota for developmental and fitness outcomes may be context dependent.