Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 17(4): e1009536, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901190

RESUMO

Several distinct activities and functions have been described for chromatin insulators, which separate genes along chromosomes into functional units. Here, we describe a novel mechanism of functional separation whereby an insulator prevents gene repression. When the homie insulator is deleted from the end of a Drosophila even skipped (eve) locus, a flanking P-element promoter is activated in a partial eve pattern, causing expression driven by enhancers in the 3' region to be repressed. The mechanism involves transcriptional read-through from the flanking promoter. This conclusion is based on the following. Read-through driven by a heterologous enhancer is sufficient to repress, even when homie is in place. Furthermore, when the flanking promoter is turned around, repression is minimal. Transcriptional read-through that does not produce anti-sense RNA can still repress expression, ruling out RNAi as the mechanism in this case. Thus, transcriptional interference, caused by enhancer capture and read-through when the insulator is removed, represses eve promoter-driven expression. We also show that enhancer-promoter specificity and processivity of transcription can have decisive effects on the consequences of insulator removal. First, a core heat shock 70 promoter that is not activated well by eve enhancers did not cause read-through sufficient to repress the eve promoter. Second, these transcripts are less processive than those initiated at the P-promoter, measured by how far they extend through the eve locus, and so are less disruptive. These results highlight the importance of considering transcriptional read-through when assessing the effects of insulators on gene expression.


Assuntos
Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Homeodomínio/genética , Elementos Isolantes/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Animais , Cromatina/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico HSP70/genética , RNA Antissenso/genética , Transcrição Gênica
2.
Sci Rep ; 7(1): 9041, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831158

RESUMO

The p53-mediated nucleolar stress response associated with inhibition of ribosomal RNA transcription was previously shown to potentiate killing of tumor cells. Here, we asked whether targeting of ribosome biogenesis can be used as the basis for selective p53-dependent cytoprotection of nonmalignant cells. Temporary functional inactivation of the 60S ribosome assembly factor Bop1 in a 3T3 cell model markedly increased cell recovery after exposure to camptothecin or methotrexate. This was due, at least in part, to reversible pausing of the cell cycle preventing S phase associated DNA damage. Similar cytoprotective effects were observed after transient shRNA-mediated silencing of Rps19, but not several other tested ribosomal proteins, indicating distinct cellular responses to the inhibition of different steps in ribosome biogenesis. By temporarily inactivating Bop1 function, we further demonstrate selective killing of p53-deficient cells with camptothecin while sparing isogenic p53-positive cells. Thus, combining cytotoxic treatments with inhibition of select post-transcriptional steps of ribosome biogenesis holds potential for therapeutic targeting of cells that have lost p53.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética , Células 3T3 , Animais , Sistemas CRISPR-Cas , Ciclo Celular/genética , Citoproteção , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Edição de Genes , Marcação de Genes , Camundongos , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA , Deleção de Sequência , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa