RESUMO
BACKGROUND: Seneca Valley virus (SVV) has emerged in multiple countries in recent years. SVV infection can cause vesicular lesions clinically indistinguishable from those caused by other vesicular disease viruses, such as foot-and-mouth disease virus (FMDV), swine vesicular disease virus (SVDV), vesicular stomatitis virus (VSV), and vesicular exanthema of swine virus (VESV). Sensitive and specific RT-PCR assays for the SVV detection is necessary for differential diagnosis. Real-time RT-PCR (rRT-PCR) has been used for the detection of many RNA viruses. The insulated isothermal PCR (iiPCR) on a portable POCKIT™ device is user friendly for on-site pathogen detection. In the present study, SVV rRT-PCR and RT-iiPCR were developed and validated. RESULTS: Neither the SVV rRT-PCR nor the RT-iiPCR cross-reacted with any of the vesicular disease viruses (20 FMDV, two SVDV, six VSV, and two VESV strains), classical swine fever virus (four strains), and 15 other common swine viruses. Analytical sensitivities of the SVV rRT-PCR and RT-iiPCR were determined using serial dilutions of in vitro transcribed RNA as well as viral RNA extracted from a historical SVV isolate and a contemporary SVV isolate. Diagnostic performances were further evaluated using 125 swine samples by two approaches. First, nucleic acids were extracted from the 125 samples using the MagMAX™ kit and then tested by both RT-PCR methods. One sample was negative by the rRT-PCR but positive by the RT-iiPCR, resulting in a 99.20% agreement (124/125; 95% CI: 96.59-100%, κ = 0.98). Second, the 125 samples were tested by the taco™ mini extraction/RT-iiPCR and by the MagMAX™ extraction/rRT-PCR system in parallel. Two samples were positive by the MagMAX™/rRT-PCR system but negative by the taco™ mini/RT-iiPCR system, resulting in a 98.40% agreement (123/125; 95% CI: 95.39-100%, κ = 0.97). The two samples with discrepant results had relatively high CT values. CONCLUSIONS: The SVV rRT-PCR and RT-iiPCR developed in this study are very sensitive and specific and have comparable diagnostic performances for SVV RNA detection. The SVV rRT-PCR can be adopted for SVV detection in laboratories. The SVV RT-iiPCR in a simple field-deployable system could serve as a tool to help diagnose vesicular diseases in swine at points of need.
Assuntos
Picornaviridae/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Doenças dos Suínos/virologia , Animais , Variação Genética , Picornaviridae/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/diagnósticoRESUMO
BACKGROUND: Foot-and-mouth disease (FMD) is an economically devastating disease that severely limits international trade of animals. Of the seven FMD virus (FMDV) serotypes, serotype A is one of the most widespread cross the world. Currently antibodies to FMDV are detected in animals using the virus neutralization test (VNT) and the enzyme-linked immunosorbent assay (ELISA). The VNT is laborious, time-consuming and reliant on live virus and cell cultures, while ELISA has the advantage of using inactivated antigens and often provides more reproducible results. The aim of this study was to develop a reliable and rapid competitive ELISA (cELISA) for the detection of antibodies to FMDV serotype A (FMDV/A). RESULTS: A panel of FMDV/A specific monoclonal antibodies (mAbs) was generated and their ability to compete with a polyclonal serum from FMDV/A-infected cattle was examined. Two mAbs inhibited the binding of a polyclonal serum to FMDV/A viruses. The binding epitopes of each were determined as conformational and located on the VP2 viral capsid protein. The FMDV/A cELISA was developed using these two mAbs and FMDV/A inactivated virus as antigen. The diagnostic specificity and sensitivity were 99.7 and 99.3% (98.5-100%) respectively, based on a predetermined cut-off of 50% inhibition. When analysing sera from animals experimentally infected with FMDV/A, the cELISA detected antibodies from 5-days post infection (dpi) and remained positive for at least 21-28 days post infection. Comparison based on the Kappa coefficient showed strong agreement (90-94%) between cELISA and VNT. CONCLUSION: The cELISA results are comparable to the VNT for antibody detection making it a simple and reliable test to detect antibodies against FMDV/A.
Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/sangue , Anticorpos Antivirais/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Febre Aftosa/imunologia , Febre Aftosa/virologia , Testes Sorológicos/métodos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Sensibilidade e EspecificidadeRESUMO
Herdsman-reported disease prevalence is widely used in veterinary epidemiologic studies, especially for diseases with visible external lesions; however, the accuracy of such reports is rarely validated. Thus, we used latent class analysis in a Bayesian framework to compare sensitivity and specificity of herdsman reporting with virus neutralization testing and use of 3 nonstructural protein ELISAs for estimates of foot-and-mouth disease (FMD) prevalence on the Adamawa plateau of Cameroon in 2000. Herdsman-reported estimates in this FMD-endemic area were comparable to those obtained from serologic testing. To harness to this cost-effective resource of monitoring emerging infectious diseases, we suggest that estimates of the sensitivity and specificity of herdsmen reporting should be done in parallel with serologic surveys of other animal diseases.
Assuntos
Vírus da Febre Aftosa , Febre Aftosa/diagnóstico , Febre Aftosa/epidemiologia , Testes de Neutralização/métodos , Testes de Neutralização/normas , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Estudos Transversais , Vírus da Febre Aftosa/imunologia , Prevalência , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
The early detection of classical swine fever (CSF) remains a key challenge, especially when outbreaks are caused by moderate and low-virulent CSF virus (CSFV) strains. Oral fluid is a reliable and cost-effective sample type that is regularly surveilled for endemic diseases in commercial pig herds in North America. Here, we explored the possibility of utilizing oral fluids for the early detection of CSFV incursions in commercial-size pig pens using two independent experiments. In the first experiment, a seeder pig infected with the moderately-virulent CSFV Pinillos strain was used, and in the second experiment, a seeder pig infected with the highly-virulent CSFV Koslov strain was used. Pen-based oral fluid samples were collected daily and individual samples (whole blood, swabs) every other day. All samples were tested by a CSFV-specific real-time RT-PCR assay. CSFV genomic material was detected in oral fluids on the seventh and fourth day post-introduction of the seeder pig into the pen, in the first and second experiments, respectively. In both experiments, oral fluids tested positive before the contact pigs developed viremia, and with no apparent sick pigs in the pen. These results indicate that pen-based oral fluids are a reliable and convenient sample type for the early detection of CSF, and therefore, can be used to supplement the ongoing CSF surveillance activities in North America.
Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Suínos , Animais , Vírus da Febre Suína Clássica/genética , Viremia/diagnóstico , Viremia/veterinária , Viremia/epidemiologia , Surtos de Doenças/veterinária , Vacinação/veterináriaRESUMO
Foot-and-mouth disease (FMD) is one of the most infectious viral transboundary diseases of livestock, which causes devastating global economic losses. Different enzyme-linked immunosorbent assays (ELISAs) are used for sero-surveillance of the foot-and-mouth disease virus (FMDV). However, more sensitive, accurate, and convenient ELISAs are still required to detect antibodies against FMDV serotypes. The primary goal of this study was to establish serotype-specific monoclonal antibody (mAb)-based blocking ELISAs (mAb-bELISAs) that would provide better performance characteristics or be equivalent in performance characteristics compared with a conventional polyclonal antibody (pAb)-based competitive ELISA (pAb-cELISA). Four mAb-bELISAs were developed using FMDV serotype-specific mAbs for the detection of anti-FMDV/O/A/Asia1/SAT2 antibodies. Using a 50% cut-off, all four mAb-bELISAs exhibited species-independent 99.74%, 98.01%, 96.59%, and 98.55% diagnostic specificity (DSp) and 98.93%, 98.25%, 100%, and 87.50% diagnostic sensitivity (DSe) for FMDV serotypes O, A, Asia1, and SAT2, respectively. In addition, a 100% DSe of serotypes O- and SAT2-specific mAb-bELISAs was observed for porcine sera when the cut-off was 30%. All mAb-bELISAs developed in this study displayed high repeatability/reproducibility without cross-reactivity. Finally, the diagnostic performance of mAb-bELISAs was found to be better than or equivalent to compared with pAb-cELISAs, suggesting that mAb-bELISAs can be used to replace existing pAb-ELISAs for the detection of antibodies against these four FMDV serotypes.
Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Vírus da Febre Aftosa , Febre Aftosa , Sensibilidade e Especificidade , Sorogrupo , Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/classificação , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Febre Aftosa/diagnóstico , Febre Aftosa/imunologia , Febre Aftosa/virologia , Suínos , Bovinos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Camundongos , Reprodutibilidade dos TestesRESUMO
The Nagoya Protocol is an international agreement adopted in 2010 (and entered into force in 2014) which governs access to genetic resources and the fair and equitable sharing of benefits from their utilisation. The agreement aims to prevent misappropriation of genetic resources and, through benefit sharing, create incentives for the conservation and sustainable use of biological diversity. While the equitable sharing of the benefits arising from the utilisation of genetic resources is a widely accepted concept, the way in which the provisions of the Nagoya Protocol are currently being implemented through national access and benefit-sharing legislation places significant logistical challenges on the control of transboundary livestock diseases such as foot-and-mouth disease (FMD). Delays to access FMD virus isolates from the field disrupt the production of new FMD vaccines and other tailored tools for research, surveillance and outbreak control. These concerns were raised within the FMD Reference Laboratory Network and were explored at a recent multistakeholder meeting hosted by the European Commission for the Control of FMD. The aim of this paper is to promote wider awareness of the Nagoya Protocol, and to highlight its impacts on the regular exchange and utilisation of biological materials collected from clinical cases which underpin FMD research activities, and work to develop new epidemiologically relevant vaccines and other diagnostic tools to control the disease.
RESUMO
The 2009 pandemic H1N1 (pH1N1), of apparent swine origin, may have evolved in pigs unnoticed because of insufficient surveillance. Consequently, the need for surveillance of influenza viruses circulating in pigs has received added attention. In this study we characterized H1N1 viruses isolated from Canadian pigs in 2009. Isolates from May 2009 were comprised of hemagglutinin and neuraminidase (NA) genes of classical SIV origin in combination with the North American triple-reassortant internal gene (TRIG) cassette, here termed contemporary SIV (conSIV) H1N1. These conSIV H1N1 viruses were contiguous with the North American αH1 cluster, which was distinct from the pH1N1 isolates that were antigenically more related to the γH1 cluster. After the initial isolation of pH1N1 from an Alberta pig farm in early May 2009, pH1N1 was found several times in Canadian pigs. These pH1N1 isolates were genetically and antigenically homogeneous. In addition, H1N1 viruses bearing seasonal human H1 and N1 genes together with the TRIG cassette and an NA encoding an oseltamivir-resistance marker were isolated from pigs. The NS gene of one of these seasonal human-like SIV (shSIV) H1N1 isolates was homologous to pH1N1 NS, implicating reassortment between the two strains. Antigenic cross-reactivity was observed between pH1N1 and conSIV but not with shSIV H1N1. In summary, although there was cocirculation of pH1N1 with conSIV and shSIV H1N1 in Canadian pigs after May 2009, there was no evidence supporting the presence of pH1N1 in pigs prior to May 2009. The possibility for further reassortants being generated exists and should be closely monitored.
Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Neuraminidase/genética , Infecções por Paramyxoviridae/veterinária , Doenças dos Suínos/virologia , Proteínas Virais/genética , Animais , Antígenos Virais/imunologia , Canadá , Análise por Conglomerados , Reações Cruzadas , Genótipo , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Dados de Sequência Molecular , Infecções por Paramyxoviridae/virologia , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , SuínosRESUMO
SUMMARY: The interface between successful pathogens and their hosts is often a tenuous balance. In acute viral infections, this balance involves induction and inhibition of innate responses. Foot-and-mouth disease virus (FMDV) is considered one of the most contagious viruses known and is characterized by rapid induction of clinical disease in cloven hoofed animals exposed to infection. Viral shedding is extensive before the equally rapid resolution of acute disease. This positive strand RNA virus is an extremely successful pathogen, due in part to the ability to interrupt the innate immune response. Previous reviews have described the inhibition of cellular innate responses in the infected cell both in vitro and in vivo. Here, we present a review of virus inhibition of cells that are a source of antiviral function in swine. Particularly in the case of dendritic cells and natural killer cells, the virus has evolved mechanisms to interrupt the normal function of these important mediators of innate function, even though these cells are not infected by the virus. Understanding how this virus subverts the innate response will provide valuable information for the development of rapidly acting biotherapeutics to use in response to an outbreak of FMDV.
Assuntos
Células Dendríticas/imunologia , Vírus da Febre Aftosa/fisiologia , Febre Aftosa/imunologia , Linfopenia/imunologia , Doenças dos Suínos/imunologia , Suínos/virologia , Proteínas Virais/imunologia , Animais , Células Dendríticas/virologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/imunologia , Linfopenia/veterinária , Linfopenia/virologia , Suínos/imunologia , Doenças dos Suínos/virologia , Linfócitos T/imunologia , Linfócitos T/virologia , Proteínas Virais/metabolismoRESUMO
Established test methods for detecting foot-and-mouth disease virus (FMDV) rely on sample collection from live animals. However, circumstances exist in which it is not possible to collect the desired samples. Meat juice has been explored as an alternative for the detection of FMDV and has previously proven successful by real-time reverse transcription polymerase chain reaction and lateral flow strip test. Meat juice has not yet been assessed for the detection of antibodies to FMDV. This study, therefore, evaluated meat juice for the detection of antibodies to structural proteins by existing serotype-specific solid phase competitive enzyme-linked immunosorbent assays. Antibodies to FMDV structural proteins were detected in meat juice from experimentally infected pigs beginning 6- or 7-days post-infection (DPI) and continued until 21 to 28 DPI. Sera were tested in tandem and followed similar antibody detection patterns. The results show that meat juice can be used for detection of anti- FMDV structural protein antibodies.
Les méthodes diagnostiques établies pour détecter le virus de la fièvre aphteuse (FMDV) reposent sur le prélèvement d'échantillons sur des animaux vivants. Cependant, il existe des circonstances lors desquelles il n'est pas possible de prélever les échantillons souhaités. Le jus de viande a été exploré comme alternative pour la détection du FMDV et s'est déjà avéré efficace par la réaction d'amplification en chaîne par la polymérase en temps réel avec la transcriptase inverse et par test d'immunochromatographie. Le jus de viande n'a pas encore été évalué pour la détection d'anticorps anti-FMDV. Cette étude a donc évalué le jus de viande pour la détection des anticorps contre les protéines structurelles par des tests immuno-enzymatiques compétitifs en phase solide spécifiques au sérotype existants. Des anticorps contre les protéines structurales du FMDV ont été détectés dans le jus de viande de porcs infectés expérimentalement à partir de 6 ou 7 jours après l'infection (DPI) et se sont poursuivis jusqu'à 21 à 28 DPI. Les sérums ont été testés en tandem et ont suivi des schémas de détection d'anticorps similaires. Les résultats montrent que le jus de viande peut être utilisé pour la détection des anticorps anti-protéine structurale du FMDV.(Traduit par Docteur Serge Messier).
Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Doenças dos Suínos , Animais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Carne , SuínosRESUMO
Over the last 15 years, FMDV serotype A viruses in South-East Asia (A/ASIA/SEA-97 lineage) have diverged into several clusters. Variants from Thailand in 2011-2013 have caused vaccine failures and returned poor r1-values (<0.30) to A22 Iraq 64 (A22) and A Malaysia 97 (A May) vaccine strains. We investigated the protective ability of monovalent and bivalent A Malaysia 97 and A22 Iraq 64 vaccine strains against infection with an A/Asia/SEA-97 variant in pigs. Pigs were challenged with a variant of A/Asia/SEA-97 lineage either 21- or 7- days post-vaccination (V21 or V7) using the heal-bulb challenge. Only one in five pigs were protected in the V21 monovalent vaccine groups. Less severe clinical signs were observed in the A22 IRQ group compared to the A MAY 97 group. In the V21 combination group, 4 out of 5 pigs were protected and viraemia was significantly reduced compared to the monovalent V21 groups. V7 vaccine groups were not protected. The neutralising antibody response was below the detection limit in all groups on the challenge day, showing a poor correlation with protection. There was no evidence that the pigs protected from systemic disease had protective antibody responses sooner than other pigs in the study, implying other immune mechanisms might play a role in protecting these animals. FMDV was detected in the nasal and oral swab samples between 1 and 6 dpc. Viral loads were lower in the nasal swab samples from the V21 combination group than the other groups, but there was no difference in the oral swab samples. Since all unvaccinated controls were euthanised by 6-day post-challenge for ethical reasons, the 'area under the curve (AUC)' method was used to compare the viraemia and virus excretion in different groups. We recommend that for the A/Asia/SEA97 variants, a combination vaccine with A Malaysia 97 and A22 Iraq 64 vaccine strains would be ideal compared to monovalent vaccines.
RESUMO
Foot-and-Mouth Disease Virus (FMDV), the causative agent of Foot-and-Mouth Disease, is a highly feared, economically devastating transboundary pathogen. This is due to the virus' extremely contagious nature and its ability to utilize multiple transmission routes. As such, rapid and accurate diagnostic testing is imperative to the control of FMD. Identification of the FMDV serotype is necessary as it provides the foundation for appropriate vaccine selection and aids in outbreak source tracing. With the vast genetic diversity, there is a desperate need to be able to characterize FMDV without relying on prior knowledge of viral serotypes. In this study, the Neptune bioinformatics tool was used to identify genetic signatures specific to each Southern African Territories (SAT) 1, 2 and 3 genomes but exclusionary to the other circulating FMDV serotypes (A, O, Asia1, and the heterologous SAT1, SAT2 and/or SAT3). Identification of these unique genomic regions allowed the design of TaqMan-based real-time reverse transcriptase PCR (rRT-PCR) primer/probe sets for SAT1, SAT2 and SAT3 viruses. These assays were optimized using prototypic FMDV cell culture isolates using the same reagents and thermocycling conditions as the FMDV pan-serotype 3D rRT-PCR assay. Cross-reactivity was evaluated in tandem with the FMDV pan-serotype 3D rRT-PCR utilizing representative strains from FMDV serotypes A, O, Asia1, SAT1, SAT2 and SAT3. The SAT1, SAT2, and SAT3 primer/probe sets were specific for the homologous serotype and exclusionary to all others. SAT1 and SAT3 primer/probe sets were able to detect several topotypes, whereas the SAT2 assay was revealed to be specific for topotype VII. The SAT2 topotype VII specificity was possibly due to the use of sequence data deposited post-2011to design the rRT-PCR primers and probes. Each assay was tested against a panel of 99 bovine tissue samples from Nigeria, where SAT2 topotype VII viruses were correctly identified and no cross-reactivity was exhibited by the SAT1 and 3 assays. These novel SAT1, SAT3 and SAT2 topotype VII rRT-PCR assays have the potential to detect and differentiate circulating FMD SAT viruses.
RESUMO
Swine vesicular disease (SVD) is an infectious viral disease of pigs. The clinical symptoms of SVD are indistinguishable from other vesicular diseases. In countries free of vesicular diseases, rapid SVD diagnosis and differentiation from other vesicular diseases are essential. In this report, a competitive enzyme-linked immunosorbent assay (cELISA) was developed and validated to improve the current SVD serological diagnosis. In this cELISA, an anti-SVD monoclonal antibody (mAb) captures the recombinant SVD virus-like particle (SVD-VLP) antigen, and 5B7 mAb is used as a competitor to compete with polyclonal antibodies in SVD-positive sera. The cut-off value of the SVD-VLP based cELISA (SVD-VLP cELISA) is ≥ 65% inhibition (%). The determined diagnostic specificity was 99.2%. SVD-VLP cELISA successfully detected SVD antibodies in the sera of SVD-infected animals and produced a diagnostic sensitivity of 100%. A panel of SVD positive sere including outbreak samples (n = 11) and samples (n = 5) from experimentally inoculated pigs, were correctly identified as positive by the SVD-VLP cELISA. In terms of reducing false positives detected by the currently used cELISA (5B7 cELISA), the performance of SVD-VLP cELISA is comparable to the gold standard virus neutralization test.
La maladie vésiculeuse du porc (SVD) est une maladie virale infectieuse des porcs. Les symptômes cliniques de la SVD sont indiscernables des autres maladies vésiculaires. Dans les pays exempts de maladies vésiculaires, un diagnostic rapide de la SVD et une différenciation avec les autres maladies vésiculaires sont essentiels. Dans ce rapport, un test immuno-enzymatique compétitif (cELISA) a été développé et validé pour améliorer le diagnostic sérologique actuel de la SVD. Dans ce cELISA, un anticorps monoclonal anti-SVD (mAb) capture l'antigène recombinant de particules de type virus SVD (SVD-VLP), et le mAb 5B7 est utilisé comme compétiteur pour concurrencer les anticorps polyclonaux dans les sérums positifs pour la SVD. La valeur seuil du cELISA basé sur SVD-VLP (cELISA SVD-VLP) est ≥ 65 % d'inhibition (%). La spécificité diagnostique déterminée était de 99,2 %. SVD-VLP cELISA a détecté avec succès des anticorps SVD dans les sérums d'animaux infectés par SVD et a produit une sensibilité diagnostique de 100 %. Un panel de sérums positifs pour la SVD, comprenant des échantillons d'épidémie (n = 11) et des échantillons (n = 5) de porcs inoculés expérimentalement, a été correctement identifié comme positif par le cELISA SVD-VLP. En termes de réduction des faux positifs détectés par le cELISA actuellement utilisé (5B7 cELISA), les performances du cELISA SVD-VLP sont comparables au test de neutralisation du virus de référence.(Traduit par Docteur Serge Messier).
Assuntos
Doenças dos Suínos , Doença Vesicular Suína , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/veterinária , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/diagnóstico , Doença Vesicular Suína/diagnósticoRESUMO
Foot-and-mouth disease virus (FMDV) causes FMD, a highly contagious disease of cloven-hoofed animals including cattle, goats, pigs and sheep. Rapid detection of FMDV is critical to limit the devastating economic losses due to FMD. Current laboratory methods for FMDV detection such as virus isolation, real-time reverse transcription PCR and antigen detection enzyme-linked immunosorbent assay (AgELISA) are labor-intensive, requiring trained personnel and specialized equipment. We present the development and validation of a pan-serotype lateral flow strip test (LFST) that uses recombinant bovine integrin αvß6 as a universal capture ligand and a pan-serotype monoclonal antibody (mAb) to detect FMDV. The LFST detected all seven FMDV serotypes, where the diagnostic sensitivity was comparable to the AgELISA, and the diagnostic specificity was 100% without cross-reactivity to other viruses causing vesicular disease in livestock. This rapid test will be useful for on-site FMDV detection, as well as in laboratories in endemic countries where laboratory resources are limited.
Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Anticorpos Monoclonais , Bovinos , Ligantes , Sensibilidade e Especificidade , Sorogrupo , Ovinos , SuínosRESUMO
Rift Valley fever (RVF) is an important emerging zoonoses causing abortion and neonatal deaths in livestock and hemorrhagic fever in humans. It is typically characterized by acute epidemics with abortion storms often preceding human disease and these events have been associated with the El Niño weather cycles. Outside of areas that experience epidemics, little is known about its epidemiology. Here, we present results from a serological study using biobank samples from a study of cattle conducted in 2013 at two sites in Cameroon. A total of 1,458 cattle from 100 herds were bled and sera screened using a commercially available RVF ELISA. The overall design-adjusted animal-level apparent seroprevalence of RVF exposure for the Northwest Region (NWR) of Cameroon was 6.5% (95% CI: 3.9-11.0) and for the Vina Division (VIN) of the Adamawa Region was 8.2% (95% CI: 6.2-11.0). The age-stratified serological results were also used to estimate the force of infection, and the age-independent estimates were 0.029 for the VIN and 0.024 for the NWR. The effective reproductive number was ~1.08. Increasing age and contact with wild antelope species were associated with an increased risk of seropositivity, while high altitudes and contact with buffalo were associated with a reduced risk of seropositivity. The serological patterns are more consistent with an endemical stability rather than the more typical epidemic patterns seen in East Africa. However, there is little surveillance in livestock for abortion storms or in humans with fevers in Cameroon, and it is, therefore, difficult to interpret these observations. There is an urgent need for an integrated One Health approach to understand the levels of human- and livestock-related clinical and asymptomatic disease and whether there is a need to implement interventions such as vaccination.
RESUMO
Foot-and-mouth disease (FMD) affects the livestock industry and socioeconomic sustainability of many African countries. The success of FMD control programs in Africa depends largely on understanding the dynamics of FMD virus (FMDV) spread. In light of the recent outbreaks of FMD that affected the North-Western African countries in 2018 and 2019, we investigated the evolutionary phylodynamics of the causative serotype O viral strains all belonging to the East-Africa 3 topotype (O/EA-3). We analyzed a total of 489 sequences encoding the FMDV VP1 genome region generated from samples collected from 25 African and Western Asian countries between 1974 and 2019. Using Bayesian evolutionary models on genomic and epidemiological data, we inferred the routes of introduction and migration of the FMDV O/EA-3 topotype at the inter-regional scale. We inferred a mean substitution rate of 6.64 × 10-3 nt/site/year and we predicted that the most recent common ancestor for our panel of samples circulated between February 1967 and November 1973 in Yemen, likely reflecting the epidemiological situation in under sampled cattle-exporting East African countries. Our study also reinforces the role previously described of Sudan and South Sudan as a frequent source of FMDVs spread. In particular, we identified two transboundary routes of O/EA-3 diffusion: the first from Sudan to North-East Africa, and from the latter into Israel and Palestine AT; a second from Sudan to Nigeria, Cameroon, and from there to further into West and North-West Africa. This study highlights the necessity to reinforce surveillance at an inter-regional scale in Africa and Western Asia, in particular along the identified migration routes for the implementation of efficient control measures in the fight against FMD.
Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Teorema de Bayes , Bovinos , Surtos de Doenças/veterinária , Febre Aftosa/epidemiologia , Vírus da Febre Aftosa/genética , Nigéria/epidemiologia , Filogenia , SorogrupoRESUMO
There are conflicting data regarding whether activation of γ-aminobutyric acid-B (GABA-B) receptors results in inhibition of tumor growth and invasion. The objectives of this study were to document the effects of the GABA-B receptor agonist baclofen on malignant hepatocyte proliferation and migration. We also sought to determine whether any effects on cell migration were mediated by changes in cyclic adenosine monophosphate (cAMP) signaling or matrix metalloproteinase (MMP) expression. Finally, GABA-B(1) and -B(2) receptor expression was documented in 2 malignant hepatocyte cell lines (PLC/PRF/5 and Huh-7) and 12 sets of human hepatocellular carcinoma and adjacent nontumor tissues. Cell proliferative activity was documented by WST-1 absorbance, migration by wound healing assays, cAMP levels by enzyme-linked immunoassay (ELISA), MMP by immunohistochemistry and ELISA, and GABA-B receptor expression by flow cytometry and reverse transcriptase - polymerase chain reaction. Although baclofen had no effect on cell proliferation, wound healing was delayed, an effect that was reversed by the GABA-B receptor antagonist CGP. cAMP levels were decreased in Huh-7 but not PLC cells exposed to baclofen. MMP expression remained unaltered in both cell lines. Finally, GABA-B(1) receptor expression was present and consistently expressed, but GABA-B(2) expression was limited and varied with the number of cell passages and (or) duration of culture. In conclusion, activation of GABA-B receptors has no effect on malignant hepatocyte proliferation but does decrease cell migration. This inhibitory effect may involve cAMP signaling but not MMP expression. GABA-B(2) receptor expression is limited and variable, which may help to explain discrepancies with previously published results.
Assuntos
Baclofeno/farmacologia , Carcinoma Hepatocelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Agonistas dos Receptores de GABA-B/farmacologia , Hepatócitos/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Receptores de GABA-B/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , AMP Cíclico/metabolismo , Feminino , Antagonistas de Receptores de GABA-B/farmacologia , Hepatócitos/fisiologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Metaloproteinases da Matriz/metabolismo , Cicatrização/efeitos dos fármacosRESUMO
Vesicular stomatitis virus (VSV) causes a disease in susceptible livestock that is clinically indistinguishable from foot-and-mouth disease. Rapid testing is therefore critical to identify VSV and rule out FMD. We previously developed and validated a multiplex real-time reverse transcription polymerase chain reaction assay (mRRT-PCR) for detection of both VS New Jersey virus (VSNJV) and VS Indiana virus (VSIV). However, it was subsequently apparent that this assay failed to detect some VSNJV isolates in Mexico, especially in genetic group II, lineage 2.1. In order to enhance the sensitivity of the mRRT-PCR for VSNJV, parts of the assay were redesigned and revalidated using new and improved PCR chemistries. The redesign markedly improved the assay by increasing the VSNJV detection sensitivity of lineage 2.1 and thereby allowing detection of all VSNJV clades. The new assay showed an increased capability to detect VSNJV. Specifically, the new mRRT-PCR detected VSNJV in 100% (87/87) of samples from Mexico in 2006-2007 compared to 74% for the previous mRRT-PCR. Furthermore, the analytical sensitivity of the new mRRT-PCR was enhanced for VSNJV. Importantly, the modified assay had the same sensitivity and specificity for VSIV as the previously published assay. Our results highlight the challenges the large genetic variability of VSV pose for virus detection by mRRT-PCR and show the importance of frequent re-evaluation and validation of diagnostic assays for VSV to ensure high sensitivity and specificity.
RESUMO
This report describes the nucleotide sequences of eight Southern African Territories 2 (SAT2) serotype foot-and-mouth disease virus strains from 2017 to 2018 outbreaks in cattle in Nigeria. These viruses belong to topotype VII of SAT2 and were closely related to previous isolates from Nigeria and other West African countries.
RESUMO
Foot-and-mouth disease (FMD) is a highly contagious disease that affects cattle, sheep, goats, pigs, and over 70 species of wildlife. FMD continues to be a major economic concern for livestock productivity in many countries. FMDV has seven serotypes O, A, Asia 1, C, and Southern Africa Territories (SAT) 1, 2, and 3. Although SAT 1, and SAT 3 outbreaks are not as common as serotypes O, A, Asia 1, and SAT 2, outbreaks have also been reported. The recent outbreaks of SAT 1 occurred in Cameroon, Zimbabwe, South Africa, and Uganda, while most recent SAT 3 occurred in Namibia in 2019. The development of rapid and easy-to-perform FMDV detection tests is critical to control the outbreak and spread of FMD. The current project has produced monoclonal antibodies (mAb) against FMDV serotypes SAT 1, and SAT 3. Using these mAbs, two lateral flow immunochromatographic (LFI) strip tests for the detection of FMDV SAT 1, and SAT 3 have been developed. SAT 1 strip test detected 14 out of 15 SAT 1 field isolates. The SAT 3 strip test detected all four SAT 3 isolates tested, but the signal is weak for UGA 10/97 and showed no cross-reactivity with other FMDV serotypes. The diagnostic specificities of the SAT 1 and the SAT 3 tests are 100 %, which are higher than double antibody sandwich (DAS) ELISA. The diagnostic sensitivity of the SAT 1 test strip is lower than that of DAS ELISA, while the diagnostic sensitivity of the SAT 3 test strip is similar to that of DAS ELISA. The first reported SAT 1 and SAT 3 strip test combined with the previously developed SAT 2 strip test can be used for quick diagnosis in endemic countries in Africa. Rapid identification of FMDV serotypes is critical for disease control and vaccine selection. Also, these strip tests can be used in the laboratory to quickly screen samples from the field.
Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Animais , Anticorpos Antivirais , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Ensaio de Imunoadsorção Enzimática , Febre Aftosa/diagnóstico , Febre Aftosa/epidemiologia , Sorogrupo , Ovinos , Suínos , UgandaRESUMO
The sustained spread of African swine fever (ASF) virus throughout much of the world has made ASF a global animal health priority, with an increased emphasis on enhancing preparedness to prevent, detect and respond to a potential outbreak of ASF virus (ASFV). In the event of ASFV entry to the North American swine population, enhanced surveillance and diagnostic testing strategies will be critical to facilitate progressive response and eradication of the disease. Compared to individual animal sampling, pen-based oral fluid collection for active surveillance is a non-invasive alternative that is less resource and time-intensive. To evaluate the feasibility of using rope-based oral fluid for early detection of ASFV, four independent animal experiments were conducted in weaned pigs housed in numbers that mimic the industry settings, utilising either highly virulent ASFV Georgia 2007/1 strain or moderately virulent ASFV Malta'78 strain. Pen-based oral fluid and individual oropharyngeal swabs were collected daily and blood samples from each animal were collected every other day. All samples were subsequently tested for ASFV by real-time PCR. ASFV genome was detected in individual blood samples as early as one day post-infection and detected in oral fluids at low-to-moderate levels as early as 3-5 days post-infection in all four independent experiments. These results suggest that pen-based oral fluid samples may be used to supplement the use of traditional samples for rapid detection of ASFV during ASF surveillance.