Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Hepatology ; 79(2): 323-340, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540188

RESUMO

BACKGROUND AND AIMS: HCC is an aggressive cancer with a poor clinical outcome. Understanding the mechanisms that drive tumor initiation is important for improving treatment strategy. This study aimed to identify functional cell membrane proteins that promote HCC tumor initiation. APPROACH AND RESULTS: Tailor-made siRNA library screening was performed for all membrane protein-encoding genes that are upregulated in human HCC (n = 134), with sphere formation as a surrogate readout for tumor initiation. Upon confirmation of membranous localization by immunofluorescence and tumor initiation ability by limiting dilution assay in vivo, LanC-like protein-1 (LANCL1) was selected for further characterization. LANCL1 suppressed intracellular reactive oxygen species (ROS) and promoted tumorigenicity both in vitro and in vivo. Mechanistically, with mass spectrometry, FAM49B was identified as a downstream binding partner of LANCL1. LANCL1 stabilized FAM49B by blocking the interaction of FAM49B with the specific E3 ubiquitin ligase TRIM21, thus protecting FAM49B from ubiquitin-proteasome degradation. The LANCL1-FAM49B axis suppressed the Rac1-NADPH oxidase-driven ROS production, but this suppression of ROS was independent of the glutathione transferase function of LANCL1. Clinically, HCCs with high co-expression of LANCL1 and FAM49B were associated with more advanced tumor stage, poorer overall survival, and disease-free survival. In addition, anti-LANCL1 antibodies targeting the extracellular N-terminal domain were able to suppress the self-renewal ability, as demonstrated by the sphere formation ability of HCC cells. CONCLUSIONS: Our data showed that LANCL1 is a cell surface protein and a key contributor to HCC initiation. Targeting the LANCL1-FAM49B-Rac1-NADPH oxidase-ROS signaling axis may be a promising therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , NADPH Oxidases/metabolismo , Linhagem Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(32): e2119514119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914158

RESUMO

Deregulation of cell cycle is a typical feature of cancer cells. Normal cells rely on the strictly coordinated spindle assembly checkpoint (SAC) to maintain the genome integrity and survive. However, cancer cells could bypass this checkpoint mechanism. In this study, we showed the clinical relevance of threonine tyrosine kinase (TTK) protein kinase, a central regulator of the SAC, in hepatocellular carcinoma (HCC) and its potential as therapeutic target. Here, we reported that a newly developed, orally active small molecule inhibitor targeting TTK (CFI-402257) effectively suppressed HCC growth and induced highly aneuploid HCC cells, DNA damage, and micronuclei formation. We identified that CFI-402257 also induced cytosolic DNA, senescence-like response, and activated DDX41-STING cytosolic DNA sensing pathway to produce senescence-associated secretory phenotypes (SASPs) in HCC cells. These SASPs subsequently led to recruitment of different subsets of immune cells (natural killer cells, CD4+ T cells, and CD8+ T cells) for tumor clearance. Our mass cytometry data illustrated the dynamic changes in the tumor-infiltrating immune populations after treatment with CFI-402257. Further, CFI-402257 improved survival in HCC-bearing mice treated with anti-PD-1, suggesting the possibility of combination treatment with immune checkpoint inhibitors in HCC patients. In summary, our study characterized CFI-402257 as a potential therapeutic for HCC, both used as a single agent and in combination therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inibidores de Proteínas Quinases , Pirazóis , Pirimidinas , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células Matadoras Naturais/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases/metabolismo , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico
3.
Gut ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839271

RESUMO

OBJECTIVE: Fat mass and obesity-associated protein (FTO), an eraser of N 6-methyadenosine (m6A), plays oncogenic roles in various cancers. However, its role in hepatocellular carcinoma (HCC) is unclear. Furthermore, small extracellular vesicles (sEVs, or exosomes) are critical mediators of tumourigenesis and metastasis, but the relationship between FTO-mediated m6A modification and sEVs in HCC is unknown. DESIGN: The functions and mechanisms of FTO and glycoprotein non-metastatic melanoma protein B (GPNMB) in HCC progression were investigated in vitro and in vivo. Neutralising antibody of syndecan-4 (SDC4) was used to assess the significance of sEV-GPNMB. FTO inhibitor CS2 was used to examine the effects on anti-PD-1 and sorafenib treatment. RESULTS: FTO expression was upregulated in patient HCC tumours. Functionally, FTO promoted HCC cell proliferation, migration and invasion in vitro, and tumour growth and metastasis in vivo. FTO knockdown enhanced the activation and recruitment of tumour-infiltrating CD8+ T cells. Furthermore, we identified GPNMB to be a downstream target of FTO, which reduced the m6A abundance of GPNMB, hence, stabilising it from degradation by YTH N 6-methyladenosine RNA binding protein F2. Of note, GPNMB was packaged into sEVs derived from HCC cells and bound to the surface receptor SDC4 of CD8+ T cells, resulting in the inhibition of CD8+ T cell activation. A potential FTO inhibitor, CS2, suppresses the oncogenic functions of HCC cells and enhances the sensitivity of anti-PD-1 and sorafenib treatment. CONCLUSION: Targeting the FTO/m6A/GPNMB axis could significantly suppress tumour growth and metastasis, and enhance immune activation, highlighting the potential of targeting FTO signalling with effective inhibitors for HCC therapy.

4.
Am J Pathol ; 193(12): 2156-2171, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37673328

RESUMO

A growing body of evidence suggests de novo lipogenesis as a key metabolic pathway adopted by cancers to fuel tumorigenic processes. While increased de novo lipogenesis has also been reported in hepatocellular carcinoma (HCC), understanding on molecular mechanisms driving de novo lipogenesis remains limited. In the present study, the functional role of sortilin, a member of the vacuolar protein sorting 10 protein receptor family, in HCC was investigated. Sortilin was overexpressed in HCC and was associated with poorer survival outcome. In functional studies, sortilin-overexpressing cells conferred tumorigenic phenotypes, namely, self-renewal and metastatic potential, of HCC cells via the cancer secretome. Proteomic profiling highlighted fatty acid metabolism as a potential molecular pathway associated with sortilin-driven cancer secretome. This finding was validated by the increased lipid content and expression of fatty acid synthase (FASN) in HCC cells treated with conditioned medium collected from sortilin-overexpressing cells. The enhanced tumorigenic properties endowed by sortilin-driven cancer secretome were partly abrogated by co-administration of FASN inhibitor C75. Further mechanistic dissection suggested protein stabilization by post-translational modification with O-GlcNAcylation as a major mechanism leading to augmented FASN expression. In conclusion, the present study uncovered the role of sortilin in hepatocarcinogenesis via modulation of the cancer secretome and deregulated lipid metabolism.


Assuntos
Carcinoma Hepatocelular , Lipogênese , Neoplasias Hepáticas , Humanos , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Secretoma
5.
Hepatology ; 78(5): 1368-1383, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632999

RESUMO

BACKGROUND AND AIMS: Understanding the mechanisms of HCC progression and metastasis is crucial to improve early diagnosis and treatment. This study aimed to identify key molecular targets involved in HCC metastasis. APPROACH AND RESULTS: Using whole-transcriptome sequencing of patients' HCCs, we identified and validated midline 1 interacting protein 1 (MID1IP1) as one of the most significantly upregulated genes in metastatic HCCs, suggesting its potential role in HCC metastasis. Clinicopathological correlation demonstrated that MID1IP1 upregulation significantly correlated with more aggressive tumor phenotypes and poorer patient overall survival rates. Functionally, overexpression of MID1IP1 significantly promoted the migratory and invasive abilities and enhanced the sphere-forming ability and expression of cancer stemness-related genes of HCC cells, whereas its stable knockdown abrogated these effects. Perturbation of MID1IP1 led to significant tumor shrinkage and reduced pulmonary metastases in an orthotopic liver injection mouse model and reduced pulmonary metastases in a tail-vein injection model in vivo . Mechanistically, SP1 transcriptional factor was found to be an upstream driver of MID1IP1 transcription. Furthermore, transcriptomic sequencing on MID1IP1-overexpressing HCC cells identified FOS-like 1 (FRA1) as a critical downstream mediator of MID1IP1. MID1IP1 upregulated FRA1 to subsequently promote its transcriptional activity and extracellular matrix degradation activity of matrix metalloproteinase MMP9, while knockdown of FRA1 effectively abolished the MID1IP1-induced migratory and invasive abilities. CONCLUSIONS: Our study identified MID1IP1 as a regulator in promoting FRA1-mediated-MMP9 signaling and demonstrated its role in HCC metastasis. Targeting MID1IP1-mediated FRA1 pathway may serve as a potential therapeutic strategy against HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Metaloproteinase 9 da Matriz/metabolismo , Metástase Neoplásica , Transdução de Sinais/genética
6.
Hepatology ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051950

RESUMO

BACKGROUND AND AIMS: Chromatin assembly factor 1 (CAF-1) is a replication-dependent epigenetic regulator that controls cell cycle progression and chromatin dynamics. In this study, we aim to investigate the immunomodulatory role and therapeutic potential of the CAF-1 complex in HCC. APPROACH AND RESULTS: CAF-1 complex knockout cell lines were established using the CRISPR/Cas9 system. The effects of CAF-1 in HCC were studied in HCC cell lines, nude mice, and immunocompetent mice. RNA-sequencing, ChIP-Seq, and assay for transposase accessible chromatin with high-throughput sequencing (ATAC-Seq) were used to explore the changes in the epigenome and transcriptome. CAF-1 complex was significantly upregulated in human and mouse HCCs and was associated with poor prognosis in patients with HCC. Knockout of CAF-1 remarkably suppressed HCC growth in both in vitro and in vivo models. Mechanistically, depletion of CAF-1 induced replicative stress and chromatin instability, which eventually led to cytoplasmic DNA leakage as micronuclei. Also, chromatin immunoprecipitation sequencing analyses revealed a massive H3.3 histone variant replacement upon CAF-1 knockout. Enrichment of euchromatic H3.3 increased chromatin accessibility and activated the expression of endogenous retrovirus elements, a phenomenon known as viral mimicry. However, cytosolic micronuclei and endogenous retroviruses are recognized as ectopic elements by the stimulator of interferon genes and dsRNA viral sensing pathways, respectively. As a result, the knockout of CAF-1 activated inflammatory response and antitumor immune surveillance and thereby significantly enhanced the anticancer effect of immune checkpoint inhibitors in HCC. CONCLUSIONS: Our findings suggest that CAF-1 is essential for HCC development; targeting CAF-1 may awaken the anticancer immune response and may work cooperatively with immune checkpoint inhibitor treatment in cancer therapy.

7.
Hepatology ; 77(3): 729-744, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302667

RESUMO

BACKGROUND AND AIMS: Prognosis of HCC remains poor due to lack of effective therapies. Immune checkpoint inhibitors (ICIs) have delayed response and are only effective in a subset of patients. Treatments that could effectively shrink the tumors within a short period of time are idealistic to be employed together with ICIs for durable tumor suppressive effects. HCC acquires increased tolerance to aneuploidy. The rapid division of HCC cells relies on centrosome duplication. In this study, we found that polo-like kinase 4 (PLK4), a centrosome duplication regulator, represents a therapeutic vulnerability in HCC. APPROACH AND RESULTS: An orally available PLK4 inhibitor, CFI-400945, potently suppressed proliferating HCC cells by perturbing centrosome duplication. CFI-400945 induced endoreplication without stopping DNA replication, causing severe aneuploidy, DNA damage, micronuclei formation, cytosolic DNA accumulation, and senescence. The cytosolic DNA accumulation elicited the DEAD box helicase 41-stimulator of interferon genes-interferon regulatory factor 3/7-NF-κß cytosolic DNA sensing pathway, thereby driving the transcription of senescence-associated secretory phenotypes, which recruit immune cells. CFI-400945 was evaluated in liver-specific p53/phosphatase and tensin homolog knockout mouse HCC models established by hydrodynamic tail vein injection. Tumor-infiltrated immune cells were analyzed. CFI-400945 significantly impeded HCC growth and increased infiltration of cluster of differentiation 4-positive (CD4 + ), CD8 + T cells, macrophages, and natural killer cells. Combination therapy of CFI-400945 with anti-programmed death-1 showed a tendency to improve HCC survival. CONCLUSIONS: We show that by targeting a centrosome regulator, PLK4, to activate the cytosolic DNA sensing-mediated immune response, CFI-400945 effectively restrained tumor progression through cell cycle inhibition and inducing antitumor immunity to achieve a durable suppressive effect even in late-stage mouse HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Aneuploidia , Carcinoma Hepatocelular/patologia , Ciclo Celular , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo
8.
Gut ; 72(7): 1370-1384, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36631249

RESUMO

OBJECTIVE: Growing evidence indicates that tumour cells exhibit characteristics similar to their lineage progenitor cells. We found that S100 calcium binding protein A10 (S100A10) exhibited an expression pattern similar to that of liver progenitor genes. However, the role of S100A10 in hepatocellular carcinoma (HCC) progression is unclear. Furthermore, extracellular vesicles (EVs) are critical mediators of tumourigenesis and metastasis, but the extracellular functions of S100A10, particularly those related to EVs (EV-S100A10), are unknown. DESIGN: The functions and mechanisms of S100A10 and EV-S100A10 in HCC progression were investigated in vitro and in vivo. Neutralising antibody (NA) to S100A10 was used to evaluate the significance of EV-S100A10. RESULTS: Functionally, S100A10 promoted HCC initiation, self-renewal, chemoresistance and metastasis in vitro and in vivo. Of significance, we found that S100A10 was secreted by HCC cells into EVs both in vitro and in the plasma of patients with HCC. S100A10-enriched EVs enhanced the stemness and metastatic ability of HCC cells, upregulated epidermal growth factor receptor (EGFR), AKT and ERK signalling, and promoted epithelial-mesenchymal transition. EV-S100A10 also functioned as a chemoattractant in HCC cell motility. Of significance, S100A10 governed the protein cargos in EVs and mediated the binding of MMP2, fibronectin and EGF to EV membranes through physical binding with integrin αⅤ. Importantly, blockage of EV-S100A10 with S100A10-NA significantly abrogated these enhancing effects. CONCLUSION: Altogether, our results uncovered that S100A10 promotes HCC progression significantly via its transfer in EVs and regulating the protein cargoes of EVs. EV-S100A10 may be a potential therapeutic target and biomarker for HCC progression.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Comunicação Celular
9.
Semin Cancer Biol ; 82: 134-149, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33647386

RESUMO

Hepatocarcinogenesis involves complex genetic and cellular dysregulations which drive the formation of hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, with extensive heterogeneity. In contrast to the broad spectrum of molecularly driven therapies available for defined patient groups in certain cancer types, unfortunately the treatment options for HCC are highly limited. The lack of representative molecular and cellular signatures in the heterogeneous HCC tumors that can effectively guide the choice of the most appropriate treatment among the patients unavoidably limits the treatment outcome. Advancement and wide availability of the next-generation sequencing technologies have empowered us to examine and capture not only the detailed genetic alterations of the HCC cells but also the precise composition of different cell types within the tumor microenvironment and their interactions with the HCC cells at an unprecedented level. The information generated has provided new insight and better defined the inter-patient intertumoral heterogeneity, intra-patient intratumoral heterogeneity as well as the plasticity of HCC cells. These collectively provide a robust scientific basis in guiding the development and use of targeted therapy and immunotherapy. To complement, liquid biopsy coupled with high-sensitivity sequencing could potentially be adopted as a more practical and safer approach to detect and reflect the tumor heterogeneity in HCC patients in guiding the choice of treatment and monitoring disease progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Microambiente Tumoral/genética
10.
Hepatology ; 76(1): 48-65, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34767674

RESUMO

BACKGROUND AND AIMS: Ras-like (Ral) small guanosine triphosphatases (GTPases), RalA and RalB, are proto-oncogenes directly downstream of Ras and cycle between the active guanosine triphosphate-bound and inactive guanosine diphosphate-bound forms. RalGTPase-activating protein (RalGAP) complex exerts a negative regulation. Currently, the role of Ral up-regulation in cancers remains unclear. We aimed to examine the clinical significance, functional implications, and underlying mechanisms of RalA signaling in HCC. APPROACH AND RESULTS: Our in-house and The Cancer Genome Atlas RNA sequencing data and quantitative PCR data revealed significant up-regulation of RalA in patients' HCCs. Up-regulation of RalA was associated with more aggressive tumor behavior and poorer prognosis. Consistently, knockdown of RalA in HCC cells attenuated cell proliferation and migration in vitro and tumorigenicity and metastasis in vivo. We found that RalA up-regulation was driven by copy number gain and uncovered that SP1 and ETS proto-oncogene 2 transcription factor cotranscriptionally drove RalA expression. On the other hand, RalGAPA2 knockdown increased the RalA activity and promoted intrahepatic and extrahepatic metastasis in vivo. Consistently, we observed significant RalGAPA2 down-regulation in patients' HCCs. Intriguingly, HCC tumors showing simultaneous down-regulation of RalGAPA2 and up-regulation of RalA displayed a significant association with more aggressive tumor behavior in terms of more frequent venous invasion, more advanced tumor stage, and poorer overall survival. Of note, Ral inhibition by a Ral-specific inhibitor RBC8 suppressed the oncogenic functions in a dose-dependent manner and sensitized HCC cells to sorafenib treatment, with an underlying enhanced inhibition of mammalian target of rapamycin signaling. CONCLUSIONS: Our results provide biological insight that dysregulation of RalA signaling through dual regulatory mechanisms supports its oncogenic functions in HCC. Targeting RalA may serve as a potential alternative therapeutic approach alone or in combination with currently available therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas ral de Ligação ao GTP , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Regulação para Baixo , Proteínas Ativadoras de GTPase/genética , Humanos , Neoplasias Hepáticas/genética , Transdução de Sinais , Proteínas ral de Ligação ao GTP/genética
11.
J Hepatol ; 77(2): 383-396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35227773

RESUMO

BACKGROUND & AIMS: The highly proliferative nature of hepatocellular carcinoma (HCC) frequently results in a hypoxic intratumoural microenvironment, which creates a therapeutic challenge owing to a lack of mechanistic understanding of the phenomenon. We aimed to identify critical drivers of HCC development and progression in the hypoxic microenvironment. METHODS: We performed integrative analysis of multiple transcriptomic and genomic profiles specific for HCC and hypoxia and identified the Ephrin-A3/Eph receptor A2 (EphA2) axis as a clinically relevant and hypoxia-inducible signalling axis in HCC. The functional significance and mechanistic consequences of the Ephrin-A3/EphA2 axis were examined in EFNA3- and EPHA2- knockdown/overexpressing HCC cells. The potential downstream pathways were investigated by transcriptome sequencing, quantitative reverse-transcription PCR, western blotting analysis and metabolomics. RESULTS: EFNA3 was frequently upregulated in HCC and its overexpression was associated with more aggressive tumour behaviours. HIF-1α directly and positively regulated EFNA3 expression under hypoxia. EFNA3 functionally contributed to self-renewal, proliferation and migration in HCC cells. EphA2 was identified as a key functional downstream mediator of EFNA3. Functional characterisation of the Ephrin-A3/EphA2 forward-signalling axis demonstrated a promotion of self-renewal ability and tumour initiation. Mechanistically, the Ephrin-A3/EphA2 axis promoted the maturation of SREBP1 and expression of its transcriptional target, ACLY, was significantly associated with the expression of EFNA3 and hypoxia markers in clinical cohorts. The metabolic signature of EPHA2 and ACLY stable knockdown HCC cells demonstrated significant overlap in fatty acid, cholesterol and tricarboxylic acid cycle metabolite profiles. ACLY was confirmed to mediate the self-renewal function of the Ephrin-A3/EphA2 axis. CONCLUSIONS: Our findings revealed the novel role of the Ephrin-A3/EphA2 axis as a hypoxia-sensitive modulator of HCC cell metabolism and a key contributor to HCC initiation and progression. LAY SUMMARY: Hepatocellular carcinoma (HCC) is a fast-growing tumour; hence, areas of the tumour often have insufficient vasculature and become hypoxic. The presence of hypoxia within tumours has been shown to negatively impact on the survival of patients with tumours, including HCC. Herein, we identified the Ephrin-A3/EphA2 axis as a key functional driver of tumour initiation and progression in response to hypoxia. Additionally, we showed that SREBP1-ACLY-mediated metabolic rewiring was an important downstream effector that induced cancer stemness in response to Ephrin-A3/EphA2 forward-signalling.


Assuntos
Carcinoma Hepatocelular , Efrina-A3 , Neoplasias Hepáticas , Receptor EphA2 , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Efrina-A3/genética , Efrina-A3/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia , Neoplasias Hepáticas/patologia , Receptor EphA2/genética , Receptor EphA2/metabolismo , Microambiente Tumoral
12.
J Hepatol ; 76(4): 883-895, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34922977

RESUMO

BACKGROUND & AIMS: Extracellular vesicles (EVs) play a pivotal role in connecting tumor cells with their local and distant microenvironments. Herein, we aimed to understand the role (on a molecular basis) patient-derived EVs play in modulating cancer stemness and tumorigenesis in the context of hepatocellular carcinoma (HCC). METHODS: EVs from patient sera were isolated, quantified and characterized. The EVs were vigorously tested, both in vitro and in vivo, through various functional assays. Proteomic analysis was performed to identify the functional components of EVs. The presence and level of polymeric immunoglobulin receptor (pIgR) in circulating EVs and tumor and non-tumorous tissues of patients with HCC were determined by ELISA, immunoblotting, immunohistochemistry and quantitative PCR. The functional role and underlying mechanism of EVs with enhanced pIgR expression were elucidated. Blockade of EV-pIgR with neutralizing antibody was performed in nude mice implanted with patient-derived tumor xenografts (PDTXs). RESULTS: Circulating EVs from patients with late-stage HCC (L-HCC) had significantly elevated pIgR expression compared to the EVs released by control individuals. The augmenting effect of L-HCC-EVs on cancer stemness and tumorigenesis was hindered by an anti-pIgR antibody. EVs enriched with pIgR consistently promoted cancer stemness and cancerous phenotypes in recipient cells. Mechanistically, EV-pIgR-induced cancer aggressiveness was abrogated by Akt and ß-catenin inhibitors, confirming that the role of EV-pIgR depends on the activation of the PDK1/Akt/GSK3ß/ß-catenin signaling axis. Furthermore, an anti-pIgR neutralizing antibody attenuated tumor growth in mice implanted with PDTXs. CONCLUSIONS: This study illustrates a previously unknown role of EV-pIgR in regulating cancer stemness and aggressiveness: EV-pIgR activates PDK1/Akt/GSK3ß/ß-catenin signaling cascades. The blockade of the intercellular communication mediated by EV-pIgR in the tumor microenvironment may provide a new therapeutic strategy for patients with cancer. LAY SUMMARY: The World Health Organization estimates that more than 1 million patients will die from liver cancer, mostly hepatocellular carcinoma (HCC), in 2030. Understanding the underlying mechanism by which HCC acquires aggressive attributes is crucial to improving the diagnosis and treatment of patients. Herein, we demonstrated that nanometer-sized extracellular vesicles released by tumors promote cancer stemness and tumorigenesis. Within these oncogenic vesicles, we identified a key component that functions as a potent modulator of cancer aggressiveness. By inhibiting this functional component of EVs using a neutralizing antibody, tumor growth was profoundly attenuated in mice. This hints at a potentially effective therapeutic alternative for patients with cancer.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Receptores de Imunoglobulina Polimérica , Animais , Anticorpos Neutralizantes , Carcinogênese/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Neoplasias Hepáticas/genética , Camundongos , Camundongos Nus , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Imunoglobulina Polimérica/metabolismo , Microambiente Tumoral , beta Catenina/genética
13.
Hepatology ; 73(1): 23-40, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32170761

RESUMO

BACKGROUND AND AIMS: Hepatitis B virus (HBV) integrations are common in hepatocellular carcinoma (HCC). In particular, alterations of the telomerase reverse transcriptase (TERT) gene by HBV integrations are frequent; however, the molecular mechanism and functional consequence underlying TERT HBV integration are unclear. APPROACH AND RESULTS: We adopted a targeted sequencing strategy to survey HBV integrations in human HBV-associated HCCs (n = 95). HBV integration at the TERT promoter was frequent (35.8%, n = 34/95) in HCC tumors and was associated with increased TERT mRNA expression and more aggressive tumor behavior. To investigate the functional importance of various integrated HBV components, we employed different luciferase reporter constructs and found that HBV enhancer I (EnhI) was the key viral component leading to TERT activation on integration at the TERT promoter. In addition, the orientation of the HBV integration at the TERT promoter further modulated the degree of TERT transcription activation in HCC cell lines and patients' HCCs. Furthermore, we performed array-based small interfering RNA library functional screening to interrogate the potential major transcription factors that physically interacted with HBV and investigated the cis-activation of host TERT gene transcription on viral integration. We identified a molecular mechanism of TERT activation through the E74 like ETS transcription factor 4 (ELF4), which normally could drive HBV gene transcription. ELF4 bound to the chimeric HBV EnhI at the TERT promoter, resulting in telomerase activation. Stable knockdown of ELF4 significantly reduced the TERT expression and sphere-forming ability in HCC cells. CONCLUSIONS: Our results reveal a cis-activating mechanism harnessing host ELF4 and HBV integrated at the TERT promoter and uncover how TERT HBV-integrated HCCs may achieve TERT activation in hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular/patologia , Vírus da Hepatite B/fisiologia , Hepatite B/complicações , Neoplasias Hepáticas/patologia , Telomerase/genética , Adulto , Idoso , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Vírus da Hepatite B/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Mutação , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional , Integração Viral , Adulto Jovem
14.
Hepatology ; 74(2): 776-796, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33619771

RESUMO

BACKGROUND AND AIMS: HCC undergoes active metabolic reprogramming. Reactive oxygen species (ROS) are excessively generated in cancer cells and are neutralized by NADPH. Malic enzymes (MEs) are the less studied NADPH producers in cancer. APPROACH AND RESULTS: We found that ME1, but not ME3, was regulated by the typical oxidative stress response pathway mediated by kelch-like ECH associated protein 1/nuclear factor erythroid 2-related factor (NRF2). Surprisingly, ME3 was constitutively induced by superenhancers. Disruption of any ME regulatory pathways decelerated HCC progression and sensitized HCC to sorafenib. Therapeutically, simultaneous blockade of NRF2 and a superenhancer complex completely impeded HCC growth. We show that superenhancers allow cancer cells to counteract the intrinsically high level of ROS through constitutively activating ME3 expression. When HCC cells encounter further episodes of ROS insult, NRF2 allows cancer cells to adapt by transcriptionally activating ME1. CONCLUSIONS: Our study reveals the complementary regulatory mechanisms which control MEs and provide cancer cells multiple layers of defense against oxidative stress. Targeting both regulatory mechanisms represents a potential therapeutic approach for HCC treatment.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Malato Desidrogenase/genética , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/genética , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Hepatócitos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/genética , Malato Desidrogenase/metabolismo , Metabolômica , Camundongos , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Hepatol ; 74(2): 360-371, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32918955

RESUMO

BACKGROUND & AIMS: Mutational profiling of patient tumors has suggested that hepatocellular carcinoma (HCC) development is mainly driven by loss-of-function mutations in tumor suppressor genes. p90 ribosomal S6 kinase 2 (RSK2) functions as a direct downstream kinase of ERK1/2 and elevated RSK2 expression has been reported to support oncogenic functions in some cancers. We investigated if RSK2 was also dysregulated by inactivating mutations in cancers including HCC. METHODS: We performed exome sequencing and targeted DNA sequencing on HBV-associated HCCs to examine recurrent RSK2 mutations. The functional significance and mechanistic consequences of RSK2 mutations were examined in natural RSK2-null HCC cells, and RSK2-knockout HCC cells. The potential downstream pathways underlying RSK2 mutations were investigated by RNA sequencing, qRT-PCR and mass spectrometry. RESULTS: We detected recurrent somatic RSK2 mutations at a rate of 6.3% in our HCC cohorts and revealed that, among many cancer types, HCC was the cancer most commonly harboring RSK2 mutations. The RSK2 mutations were inactivating and associated with a more aggressive tumor phenotype. We found that, functionally, restoring RSK2 expression in natural RSK2-null HBV-positive Hep3B cells suppressed proliferation and migration in vitro and tumorigenicity in vivo. Mechanistically, RSK2-inactivating mutations attenuated a SOS1/2-dependent negative feedback loop, leading to the activation of MAPK signaling. Of note, this RSK2 mutation-mediated MAPK upregulation rendered HCC cells more sensitive to sorafenib, a first-line multi-kinase inhibitor for advanced HCC. Furthermore, such activation of MAPK signaling enhanced cholesterol biosynthesis-related gene expression in HCC cells. CONCLUSIONS: Our findings reveal the mechanistic and functional significance of RSK2-inactivating mutations in HCC. These inactivating mutations may serve as an alternative route to activate MAPK signaling and cholesterol metabolism in HCC. LAY SUMMARY: In this study, we identified and functionally characterized RSK2-inactivating mutations in human hepatocellular carcinoma and demonstrated their association with aggressive tumor behavior. Mutations in RSK2 drive signaling pathways with known oncogenic potential, leading to enhanced cholesterol biosynthesis and potentially sensitizing tumors to sorafenib treatment.


Assuntos
Carcinoma Hepatocelular , Colesterol , Neoplasias Hepáticas , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Sorafenibe/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/análise , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Colesterol/biossíntese , Colesterol/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mutação com Perda de Função , Sistema de Sinalização das MAP Quinases/genética , Sequenciamento do Exoma
16.
Gastroenterology ; 159(2): 609-623, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275969

RESUMO

BACKGROUND & AIMS: Immune checkpoint inhibitors are effective in the treatment of some hepatocellular carcinomas (HCCs), but these tumors do not always respond to inhibitors of programmed cell death 1 (PDCD1, also called PD1). We investigated mechanisms of resistance of liver tumors in mice to infiltrating T cells. METHODS: Mice were given hydrodynamic tail vein injections of clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) and transposon vectors to disrupt Trp53 and overexpress C-Myc (Trp53KO/C-MycOE mice). Pvrl1 and Pvrl3 were knocked down in Hepa1-6 cells by using short hairpin RNAs. Hepa1-6 cells were injected into livers of C57BL/6 mice; some mice were given intraperitoneal injections of antibodies against PD1, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), or CD8 before the cancer cells were injected. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and quantitative real-time polymerase chain reaction; tumors were analyzed by mass cytometry using markers to detect T cells and other lymphocytes. We obtained HCC and nontumorous liver tissues and clinical data from patients who underwent surgery in Hong Kong and analyzed the tissues by immunohistochemistry. RESULTS: Trp53KO/C-MycOE mice developed liver tumors in 3-5 weeks; injections of anti-PD1 did not slow tumor development. Tumors from mice given anti-PD1 had larger numbers of memory CD8+ T cells (CD44+CD62L-KLRG1int) and T cells that expressed PD1, lymphocyte activating 3 (LAG3), and TIGIT compared with mice not given the antibody. HCC tissues from patients had higher levels of PVRL1 messenger RNA and protein than nontumorous tissues. Increased PVRL1 was associated with shorter times of disease-free survival. Knockdown of Pvrl1 in Hepa1-6 cells caused them to form smaller tumors in mice, infiltrated by higher numbers of CD8+ T cells that expressed the inhibitory protein TIGIT; these effects were not observed in mice with depletion of CD8+ T cells. In Hepa1-6 cells, PVRL1 stabilized cell surface PVR, which interacted with TIGIT on CD8+ T cells; knockdown of Pvrl1 reduced cell-surface levels of PVR but not levels of Pvr messenger RNA. In Trp53KO/C-MycOE mice and mice with tumors grown from Hepa1-6 cells, injection of the combination of anti-PD1 and anti-TIGIT significantly reduced tumor growth, increased the ratio of cytotoxic to regulatory T cells in tumors, and prolonged survival. CONCLUSIONS: PVRL1, which is up-regulated by HCC cells, stabilizes cell surface PVR, which interacts with TIGIT, an inhibitory molecule on CD8+ effector memory T cells. This suppresses the ant-tumor immune response. Inhibitors of PVRL1/TIGIT, along with anti-PD1 might be developed for treatment of HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Nectinas/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/mortalidade , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos , Camundongos Knockout , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Estabilidade Proteica , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo , Critérios de Avaliação de Resposta em Tumores Sólidos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Proteína Supressora de Tumor p53/genética , Regulação para Cima
17.
Hepatology ; 72(1): 155-168, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31610028

RESUMO

BACKGROUND AND AIMS: The survival benefit of sorafenib for patients with hepatocellular carcinoma (HCC) is unsatisfactory due to the development of adaptive resistance. Increasing evidence has demonstrated that drug resistance can be acquired by cancer cells by activating a number of signaling pathways through receptor tyrosine kinases (RTKs); nevertheless, the detailed mechanism for the activation of these alternative pathways is not fully understood. APPROACH AND RESULTS: Given the physiological role of Src homology 2 domain-containing phosphatase 2 (SHP2) as a downstream effector of many RTKs for activation of various signaling cascades, we first found that SHP2 was markedly up-regulated in our established sorafenib-resistant cell lines as well as patient-derived xenografts. Upon sorafenib treatment, adaptive resistance was acquired in HCC cells through activation of RTKs including AXL, epidermal growth factor receptor, EPH receptor A2, and insulin-like growth factor 1 receptor, leading to RAS/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK), and AKT reactivation. We found that the SHP2 inhibitor SHP099 abrogated sorafenib resistance in HCC cell lines and organoid culture in vitro by blocking this negative feedback mechanism. Interestingly, this sensitization effect was also mediated by induction of cellular senescence. SHP099 in combination with sorafenib was highly efficacious in the treatment of xenografts and genetically engineered models of HCC. CONCLUSIONS: SHP2 blockade by SHP099 in combination with sorafenib attenuated the adaptive resistance to sorafenib by impeding RTK-induced reactivation of the MEK/ERK and AKT signaling pathways. SHP099 in combination with sorafenib may be a safe therapeutic strategy against HCC.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Piperidinas/administração & dosagem , Pirimidinas/administração & dosagem , Proteínas Tirosina Fosfatases Contendo o Domínio SH2/antagonistas & inibidores , Sorafenibe/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Combinação de Medicamentos , Humanos , Piperidinas/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/fisiologia , Sorafenibe/farmacologia
18.
J Pathol ; 252(1): 65-76, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32558942

RESUMO

Hepatocellular carcinoma (HCC) is a biologically aggressive cancer. Targeted therapy is in need to tackle challenges in the treatment perspective. A growing body of evidence suggests a promising role of pharmacological inhibition of PIM (proviral integration site for Moloney murine leukaemia virus) kinase in some human haematological and solid cancers. Yet to date, the potential application of PIM inhibitors in HCC is still largely unexplored. In the present study we investigated the pre-clinical efficacy of PIM inhibition as a therapeutic approach in HCC. Effects of PIM inhibitors on cell proliferation, migration, invasion, chemosensitivity, and self-renewal were examined in vitro. The effects of PIM inhibitors on tumour growth and chemoresistance in vivo were studied using xenograft mouse models. Potential downstream molecular mechanisms were elucidated by RNA sequencing (RNA-seq) of tumour tissues harvested from animal models. Our findings demonstrate that PIM inhibitors SGI-1776 and PIM447 reduced HCC proliferation, metastatic potential, and self-renewal in vitro. Results from in vivo experiments supported the role of PIM inhibition in suppressing of tumour growth and increasing chemosensitivity of HCC toward cisplatin and doxorubicin, the two commonly used chemotherapeutic agents in trans-arterial chemoembolisation (TACE) for HCC. RNA-seq analysis revealed downregulation of the MAPK/ERK pathway upon PIM inhibition in HCC cells. In addition, LOXL2 and ICAM1 were identified as potential downstream effectors. Taken together, PIM inhibitors demonstrated remarkable anti-tumourigenic effects in HCC in vitro and in vivo. PIM kinase inhibition is a potential approach to be exploited in formulating adjuvant therapy for HCC patients of different disease stages. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Neoplasias Hepáticas/patologia , Camundongos , Invasividade Neoplásica/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Gut ; 69(2): 329-342, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31439637

RESUMO

OBJECTIVE: Facilitates Chromatin Transcription (FACT) complex is a histone chaperone participating in DNA repair-related and transcription-related chromatin dynamics. In this study, we investigated its oncogenic functions, underlying mechanisms and therapeutic implications in human hepatocellular carcinoma (HCC). DESIGN: We obtained HCC and its corresponding non-tumorous liver samples from 16 patients and identified FACT complex as the most upregulated histone chaperone by RNA-Seq. We further used CRISPR-based gene activation and knockout systems to demonstrate the functions of FACT complex in HCC growth and metastasis. Functional roles and mechanistic insights of FACT complex in oxidative stress response were investigated by ChIP assay, flow cytometry, gene expression assays and 4sU-DRB transcription elongation assay. Therapeutic effect of FACT complex inhibitor, Curaxin, was tested in both in vitro and in vivo models. RESULTS: We showed that FACT complex was remarkably upregulated in HCC and contributed to HCC progression. Importantly, we unprecedentedly revealed an indispensable role of FACT complex in NRF2-driven oxidative stress response. Oxidative stress prevented NRF2 and FACT complex from KEAP1-mediated protein ubiquitination and degradation. Stabilised NRF2 and FACT complex form a positive feedback loop; NRF2 transcriptionally activates the FACT complex, while FACT complex promotes the transcription elongation of NRF2 and its downstream antioxidant genes through facilitating rapid nucleosome disassembly for the passage of RNA polymerase. Therapeutically, Curaxin effectively suppressed HCC growth and sensitised HCC cell to sorafenib. CONCLUSION: In conclusion, our findings demonstrated that FACT complex is essential for the expeditious HCC oxidative stress response and is a potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Chaperonas de Histonas/fisiologia , Neoplasias Hepáticas/fisiopatologia , Estresse Oxidativo/fisiologia , Fatores de Elongação da Transcrição/fisiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/prevenção & controle , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Inativação de Genes/métodos , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/biossíntese , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/fisiopatologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Nus , Estresse Oxidativo/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Fatores de Elongação da Transcrição/antagonistas & inibidores , Fatores de Elongação da Transcrição/biossíntese , Fatores de Elongação da Transcrição/genética , Regulação para Cima/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Br J Cancer ; 122(10): 1428-1440, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32231294

RESUMO

Cancer stemness, referring to the stem-cell-like phenotype of cancer cells, has been recognised to play important roles in different aspects of hepatocarcinogenesis. A number of well-established cell-surface markers already exist for liver cancer stem cells, with potential new markers of liver cancer stem cells being identified. Both genetic and epigenetic factors that affect various signalling pathways are known to contribute to cancer stemness. In addition, the tumour microenvironment-both physical and cellular-is known to play an important role in regulating cancer stemness, and the potential interaction between cancer stem cells and their microenvironment has provided insight into the regulation of the tumour-initiating ability as well as the cellular plasticity of liver CSCs. Potential specific therapeutic targeting of liver cancer stemness is also discussed. With increased knowledge, effective druggable targets might be identified, with the aim of improving treatment outcome by reducing chemoresistance.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa